Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2019

07.11.2019

Computational Investigation of Melt Pool Process Dynamics and Pore Formation in Laser Powder Bed Fusion

verfasst von: Bo Cheng, Lukas Loeber, Hannes Willeck, Udo Hartel, Charles Tuffile

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the laser powder bed fusion additive manufacturing process, the presence of porosity may result in cracks and significantly affects the part performance. A comprehensive understanding of the melt pool process dynamics and porosity evolution can help to improve build quality. In this study, a novel multi-physics computational fluid dynamics (CFD) model has been applied to investigate the fluid dynamics in melt pools and resultant pore defects. To accurately capture the melting and solidification process, major process physics, such as the surface tension, evaporation as well as laser multi-reflection, have been considered in the model. A discrete element method is utilized to model the generation of powder spreading upon build plate by additional numerical simulations. Multiple single track experiments have been performed to obtain the melt pool shape and cross-sectional dimension information. The predicted melt pool dimensions were found to have a reasonable agreement with experimental measurements, e.g., the errors are in the range of 1.3 to 10.6% for melt pool width, while they are between 1.4 and 15.9% for melt depth. Pores are captured by both CFD simulation and x-ray computed tomography measurement for the case with a laser power of 350 W and laser speed of 100 mm/s. The formation of keyholes maybe related to the melt pool front wall angle, and it is found that the front wall angle increases with the increase in laser line energy density. In addition, a larger laser power or smaller scanning speed can help to generate keyhole-induced pores; they also contribute to produce larger sized pores.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance, Int. J. Fatigue, 2013, 48, p 300–307CrossRef S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance, Int. J. Fatigue, 2013, 48, p 300–307CrossRef
2.
Zurück zum Zitat N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing Porosity in AlSi10 Mg Parts Processed by Selective Laser Melting, Additive Manufacturing, 2014, 1, p 77–86CrossRef N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, and C. Tuck, Reducing Porosity in AlSi10 Mg Parts Processed by Selective Laser Melting, Additive Manufacturing, 2014, 1, p 77–86CrossRef
3.
Zurück zum Zitat H. Gong, H. Gu, K. Zeng, J.J.S. Dilip, D. Pal, B. Stucker, D. Christiansen, J. Beuth, and J.J.Lewandowski, Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. In 25th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, August 4-6, 2014, pp. 256–267 H. Gong, H. Gu, K. Zeng, J.J.S. Dilip, D. Pal, B. Stucker, D. Christiansen, J. Beuth, and J.J.Lewandowski, Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder. In 25th Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference, Austin, TX, USA, August 4-6, 2014, pp. 256–267
4.
Zurück zum Zitat S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, and F. Walther, Computed Tomography for Characterization of Fatigue Performance of Selective Laser Melted Parts, Mater. Des., 2015, 83, p 661–669CrossRef S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, and F. Walther, Computed Tomography for Characterization of Fatigue Performance of Selective Laser Melted Parts, Mater. Des., 2015, 83, p 661–669CrossRef
5.
Zurück zum Zitat X. Cai, A.A. Malcolm, B.S. Wong, and Z. Fan, Measurement and Characterization of Porosity in Aluminium Selective Laser Melting Parts Using X-ray CT, Virt. Phys. Prototyp., 2015, 10(4), p 195–206CrossRef X. Cai, A.A. Malcolm, B.S. Wong, and Z. Fan, Measurement and Characterization of Porosity in Aluminium Selective Laser Melting Parts Using X-ray CT, Virt. Phys. Prototyp., 2015, 10(4), p 195–206CrossRef
6.
Zurück zum Zitat S. Shrestha, T. Starr, and K. Chou, Individual and Coupled Contributions of Laser Power and Scanning Speed Towards Process-Induced Porosity in Selective Laser Melting. In 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, Austin, TX, USA, August 13–15, 2018, pp. 1400–1409 S. Shrestha, T. Starr, and K. Chou, Individual and Coupled Contributions of Laser Power and Scanning Speed Towards Process-Induced Porosity in Selective Laser Melting. In 29th Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference, Austin, TX, USA, August 13–15, 2018, pp. 1400–1409
7.
Zurück zum Zitat C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, In Situ X-Ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing, Nat. Commun., 2018, 9(1), p 1355CrossRef C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, In Situ X-Ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing, Nat. Commun., 2018, 9(1), p 1355CrossRef
8.
Zurück zum Zitat R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging, Science, 2019, 363(6429), p 849–852CrossRef R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging, Science, 2019, 363(6429), p 849–852CrossRef
9.
Zurück zum Zitat S. Shrestha, K. Chou, Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM. In TMS Annual Meeting and Exhibition, pp. 85–95. Springer, Cham, 2018CrossRef S. Shrestha, K. Chou, Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM. In TMS Annual Meeting and Exhibition, pp. 85–95. Springer, Cham, 2018CrossRef
10.
Zurück zum Zitat M. Xia, G. Dongdong, Yu Guanqun, D. Dai, H. Chen, and Q. Shi, Porosity Evolution and Its Thermodynamic Mechanism of Randomly Packed Powder-Bed During Selective Laser Melting of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2017, 116, p 96–106CrossRef M. Xia, G. Dongdong, Yu Guanqun, D. Dai, H. Chen, and Q. Shi, Porosity Evolution and Its Thermodynamic Mechanism of Randomly Packed Powder-Bed During Selective Laser Melting of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2017, 116, p 96–106CrossRef
11.
Zurück zum Zitat W. Yan, W. Ge, Ya Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, and G.J. Wagner, Multi-physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting, Acta Mater., 2017, 134, p 324–333CrossRef W. Yan, W. Ge, Ya Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, and G.J. Wagner, Multi-physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting, Acta Mater., 2017, 134, p 324–333CrossRef
12.
Zurück zum Zitat J.L. Tan, C. Tang, and C.H. Wong, A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting, Metall. Mater. Trans. A, 2018, 49(8), p 3663–3673CrossRef J.L. Tan, C. Tang, and C.H. Wong, A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting, Metall. Mater. Trans. A, 2018, 49(8), p 3663–3673CrossRef
13.
Zurück zum Zitat Y.S. Lee and W. Zhang, Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion, Addit. Manuf., 2016, 12, p 178–188CrossRef Y.S. Lee and W. Zhang, Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion, Addit. Manuf., 2016, 12, p 178–188CrossRef
14.
Zurück zum Zitat B. Cheng, X. Li, C. Tuffile, A. Ilin, H. Willeck, and U. Hartel, Multi-physics modeling of single track scanning in selective laser melting: powder compaction effect. In 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, Austin, TX, USA, August 13–15, 2018, pp. 1887–1902 B. Cheng, X. Li, C. Tuffile, A. Ilin, H. Willeck, and U. Hartel, Multi-physics modeling of single track scanning in selective laser melting: powder compaction effect. In 29th Annual International Solid Freeform Fabrication SymposiumAn Additive Manufacturing Conference, Austin, TX, USA, August 13–15, 2018, pp. 1887–1902
15.
Zurück zum Zitat W. Yu-Che, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang, Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation, J. Mater. Process. Technol., 2018, 254, p 72–78CrossRef W. Yu-Che, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang, Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation, J. Mater. Process. Technol., 2018, 254, p 72–78CrossRef
16.
Zurück zum Zitat J.-H. Cho and S.-J. Na, Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole, J. Phys. D Appl. Phys., 2006, 39(24), p 5372CrossRef J.-H. Cho and S.-J. Na, Implementation of real-time multiple reflection and Fresnel absorption of laser beam in keyhole, J. Phys. D Appl. Phys., 2006, 39(24), p 5372CrossRef
17.
Zurück zum Zitat K.C. Mills, Recommended Values of Thermo-physical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, 2002, p 211–216CrossRef K.C. Mills, Recommended Values of Thermo-physical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, 2002, p 211–216CrossRef
18.
Zurück zum Zitat A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the Laser–Powder–Atmosphere Interaction Zone During the Selective Laser Melting Process, J. Mater. Process. Technol., 2015, 225, p 122–132CrossRef A. Masmoudi, R. Bolot, and C. Coddet, Investigation of the Laser–Powder–Atmosphere Interaction Zone During the Selective Laser Melting Process, J. Mater. Process. Technol., 2015, 225, p 122–132CrossRef
19.
Zurück zum Zitat W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2(4), p 041304CrossRef W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, and A.M. Rubenchik, Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges, Appl. Phys. Rev., 2015, 2(4), p 041304CrossRef
20.
Zurück zum Zitat A.V. Gusarov and I. Smurov, Modeling the interaction of laser radiation with powder bed at selective laser melting, Phys. Proc., 2010, 5, p 381–394CrossRef A.V. Gusarov and I. Smurov, Modeling the interaction of laser radiation with powder bed at selective laser melting, Phys. Proc., 2010, 5, p 381–394CrossRef
21.
Zurück zum Zitat I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8080CrossRef I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8080CrossRef
Metadaten
Titel
Computational Investigation of Melt Pool Process Dynamics and Pore Formation in Laser Powder Bed Fusion
verfasst von
Bo Cheng
Lukas Loeber
Hannes Willeck
Udo Hartel
Charles Tuffile
Publikationsdatum
07.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04435-y

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Engineering and Performance 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.