Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

14.06.2021

Effect of Travel Speed on the Properties of Al-Mg Aluminum Alloy Fabricated by Wire Arc Additive Manufacturing

verfasst von: M. M. Tawfik, M. M. Nemat-Alla, M. M. Dewidar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Al-Mg aluminum alloy thin-wall components were deposited using wire + arc additive manufacturing (WAAM). Gas tungsten arc welding (GTAW) was adopted using ER5356 wire as the filler metal to fabricate components. Three travel speeds (TS) of 200, 320, and 500 mm/min were adopted to achieve changed heat input. Its effects on microstructure characteristics and tensile behavior were studied. The microstructure of alloys deposited with a TS of 500 mm/min contained fine and equiaxed grains compared with other deposited alloys. The TS 500 mm/min had a good assisting influence of controlling the forming quality and little pores, and cracks were observed. Alloys deposited at the TS 500 mm/min displayed higher mechanical properties with an ultimate tensile strength (UTS) of 245.5 MPa and elongation of 35.28%. Besides, changing the TS had a small effect on the microhardness with a value of 2.3Hv.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.CrossRef D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.CrossRef
2.
Zurück zum Zitat M. Köhler, S. Fiebig, J. Hensel and K. Dilger, Wire and Arc Additive Manufacturing of Aluminum Components, Metals, 2019, 9(5), p 608.CrossRef M. Köhler, S. Fiebig, J. Hensel and K. Dilger, Wire and Arc Additive Manufacturing of Aluminum Components, Metals, 2019, 9(5), p 608.CrossRef
3.
Zurück zum Zitat R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen, C. Liu, Hot-wire Arc Additive Manufacturing of Aluminum Alloy with Reduced Porosity and High Deposition Rate. Materi. Des., 109370 (2020) R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen, C. Liu, Hot-wire Arc Additive Manufacturing of Aluminum Alloy with Reduced Porosity and High Deposition Rate. Materi. Des., 109370 (2020)
4.
Zurück zum Zitat K.S. Derekar, A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium, Mater. Sci. Technol., 2018, 34(8), p 895–916.CrossRef K.S. Derekar, A Review of Wire Arc Additive Manufacturing and Advances in Wire Arc Additive Manufacturing of Aluminium, Mater. Sci. Technol., 2018, 34(8), p 895–916.CrossRef
5.
Zurück zum Zitat M. Dewidar, J. Lim, K. Dalgarno, A Comparison between Direct and Indirect Laser Sintering of Metals, J. Mater. Sci. Technol., 2009, 24, p 227–232. M. Dewidar, J. Lim, K. Dalgarno, A Comparison between Direct and Indirect Laser Sintering of Metals, J. Mater. Sci. Technol., 2009, 24, p 227–232.
6.
Zurück zum Zitat S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal and P. Colegrove, Wire + Arc Additive Manufacturing, Mater. Sci. Technol., 2016, 32(7), p 641–647.CrossRef S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal and P. Colegrove, Wire + Arc Additive Manufacturing, Mater. Sci. Technol., 2016, 32(7), p 641–647.CrossRef
7.
Zurück zum Zitat Y. Li, S. Yu, Y. Chen, R. Yu and Y. Shi, Wire and Arc Additive Manufacturing of Aluminum Alloy Lattice Structure, J. Manuf. Process., 2020, 50, p 510–519.CrossRef Y. Li, S. Yu, Y. Chen, R. Yu and Y. Shi, Wire and Arc Additive Manufacturing of Aluminum Alloy Lattice Structure, J. Manuf. Process., 2020, 50, p 510–519.CrossRef
8.
Zurück zum Zitat C. Wright, K. Dalgarno and M. Dewidar, Processing conditions and mechanical properties of high speed steel parts fabricated using direct selective laser sintering, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2003, 217. C. Wright, K. Dalgarno and M. Dewidar, Processing conditions and mechanical properties of high speed steel parts fabricated using direct selective laser sintering, Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2003, 217.
9.
Zurück zum Zitat R. Sun, L. Li, Y. Zhu, W. Guo, P. Peng, B. Cong, J. Sun, Z. Che, B. Li and C. Guo, Microstructure, Residual Stress and Tensile Properties Control of Wire-Arc Additive Manufactured 2319 Aluminum Alloy with Laser Shock Peening, J. Alloy. Compd., 2018, 747, p 255–265.CrossRef R. Sun, L. Li, Y. Zhu, W. Guo, P. Peng, B. Cong, J. Sun, Z. Che, B. Li and C. Guo, Microstructure, Residual Stress and Tensile Properties Control of Wire-Arc Additive Manufactured 2319 Aluminum Alloy with Laser Shock Peening, J. Alloy. Compd., 2018, 747, p 255–265.CrossRef
10.
Zurück zum Zitat F. Montevecchi, G. Venturini, N. Grossi, A. Scippa and G. Campatelli, Idle Time Selection for Wire-Arc Additive Manufacturing: A Finite Element-Based Technique, Addit. Manuf., 2018, 21, p 479–486. F. Montevecchi, G. Venturini, N. Grossi, A. Scippa and G. Campatelli, Idle Time Selection for Wire-Arc Additive Manufacturing: A Finite Element-Based Technique, Addit. Manuf., 2018, 21, p 479–486.
11.
Zurück zum Zitat Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang and Z. Wang, Influence of Travel Speed on Microstructure and Mechanical Properties of Wire+ Arc Additively Manufactured 2219 Aluminum Alloy, J. Mater. Sci. Technol., 2020, 37, p 143–153.CrossRef Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang and Z. Wang, Influence of Travel Speed on Microstructure and Mechanical Properties of Wire+ Arc Additively Manufactured 2219 Aluminum Alloy, J. Mater. Sci. Technol., 2020, 37, p 143–153.CrossRef
12.
Zurück zum Zitat G. Wang, Y. Zhao and Y. Hao, Friction Stir Welding of High-Strength Aerospace Aluminum Alloy and Application in Rocket Tank Manufacturing, J. Mater. Sci. Technol., 2018, 34(1), p 73–91.CrossRef G. Wang, Y. Zhao and Y. Hao, Friction Stir Welding of High-Strength Aerospace Aluminum Alloy and Application in Rocket Tank Manufacturing, J. Mater. Sci. Technol., 2018, 34(1), p 73–91.CrossRef
13.
Zurück zum Zitat P.T. Summers, A.P. Mouritz, S.W. Case and B.Y. Lattimer, Microstructure-based Modeling of Residual Yield Strength and Strain Hardening After Fire Exposure of Aluminum Alloy 5083–H116, Mater. Sci. Eng., A, 2015, 632, p 14–28.CrossRef P.T. Summers, A.P. Mouritz, S.W. Case and B.Y. Lattimer, Microstructure-based Modeling of Residual Yield Strength and Strain Hardening After Fire Exposure of Aluminum Alloy 5083–H116, Mater. Sci. Eng., A, 2015, 632, p 14–28.CrossRef
14.
Zurück zum Zitat J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46(1), p 151–186.CrossRef J.J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties, Annu. Rev. Mater. Res., 2016, 46(1), p 151–186.CrossRef
15.
Zurück zum Zitat F. Martina, P.A. Colegrove, S.W. Williams and J. Meyer, Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components, Metall. and Mater. Trans. A., 2015, 46(12), p 6103–6118.CrossRef F. Martina, P.A. Colegrove, S.W. Williams and J. Meyer, Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components, Metall. and Mater. Trans. A., 2015, 46(12), p 6103–6118.CrossRef
16.
Zurück zum Zitat J. Gu, J. Bai, J. Ding, S. Williams, L. Wang and K. Liu, Design and Cracking Susceptibility of Additively Manufactured Al-Cu-Mg Alloys with Tandem Wires and Pulsed Arc, J. Mater. Process. Technol., 2018, 262, p 210–220.CrossRef J. Gu, J. Bai, J. Ding, S. Williams, L. Wang and K. Liu, Design and Cracking Susceptibility of Additively Manufactured Al-Cu-Mg Alloys with Tandem Wires and Pulsed Arc, J. Mater. Process. Technol., 2018, 262, p 210–220.CrossRef
18.
Zurück zum Zitat J. Wang, X. Lin, J. Wang, H. Yang, Y. Zhou, C. Wang, Q. Li and W. Huang, Grain Morphology Evolution and Texture Characterization of Wire and Arc Additive Manufactured Ti-6Al-4V, J. Alloy. Compd., 2018, 768, p 97–113.CrossRef J. Wang, X. Lin, J. Wang, H. Yang, Y. Zhou, C. Wang, Q. Li and W. Huang, Grain Morphology Evolution and Texture Characterization of Wire and Arc Additive Manufactured Ti-6Al-4V, J. Alloy. Compd., 2018, 768, p 97–113.CrossRef
19.
Zurück zum Zitat D. Oropeza, D.C. Hofmann, K. Williams, S. Firdosy, P. Bordeenithikasem, M. Sokoluk, M. Liese, J. Liu and X. Li, Welding and Additive Manufacturing with Nanoparticle-Enhanced Aluminum 7075 Wire, J Alloys Compd, 2020, 834, p 154987. (in eng)CrossRef D. Oropeza, D.C. Hofmann, K. Williams, S. Firdosy, P. Bordeenithikasem, M. Sokoluk, M. Liese, J. Liu and X. Li, Welding and Additive Manufacturing with Nanoparticle-Enhanced Aluminum 7075 Wire, J Alloys Compd, 2020, 834, p 154987. (in eng)CrossRef
20.
Zurück zum Zitat Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu and G. Ma, Comparative Study of Microstructure Evaluation and Mechanical Properties of 4043 Aluminum Alloy Fabricated by Wire-Based Additive Manufacturing, Mater. Des., 2020, 186, p 108205.CrossRef Q. Miao, D. Wu, D. Chai, Y. Zhan, G. Bi, F. Niu and G. Ma, Comparative Study of Microstructure Evaluation and Mechanical Properties of 4043 Aluminum Alloy Fabricated by Wire-Based Additive Manufacturing, Mater. Des., 2020, 186, p 108205.CrossRef
21.
Zurück zum Zitat G. Liu, J. Xiong and L. Tang, Microstructure and Mechanical Properties of 2219 Aluminum Alloy Fabricated by Double-Electrode Gas Metal Arc Additive Manufacturing, Addit. Manuf., 2020, 35, p 101375. G. Liu, J. Xiong and L. Tang, Microstructure and Mechanical Properties of 2219 Aluminum Alloy Fabricated by Double-Electrode Gas Metal Arc Additive Manufacturing, Addit. Manuf., 2020, 35, p 101375.
22.
Zurück zum Zitat Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang and Z. Wang, Influence of Travel Speed on Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2219 Aluminum Alloy, J. Mater. Sci. Technol., 2020, 37, p 143–153.CrossRef Y. Zhou, X. Lin, N. Kang, W. Huang, J. Wang and Z. Wang, Influence of Travel Speed on Microstructure and Mechanical Properties of Wire + Arc Additively Manufactured 2219 Aluminum Alloy, J. Mater. Sci. Technol., 2020, 37, p 143–153.CrossRef
23.
Zurück zum Zitat C.M.A. Silva, I.M.F. Bragança, A. Cabrita, L. Quintino and P.A.F. Martins, Formability of a Wire Arc Deposited Aluminium Alloy, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(10), p 4059–4068.CrossRef C.M.A. Silva, I.M.F. Bragança, A. Cabrita, L. Quintino and P.A.F. Martins, Formability of a Wire Arc Deposited Aluminium Alloy, J. Braz. Soc. Mech. Sci. Eng., 2017, 39(10), p 4059–4068.CrossRef
24.
Zurück zum Zitat C.L.M. da Silva and A. Scotti, The Influence of Double Pulse on Porosity Formation in Aluminum GMAW, J. Mater. Process. Technol., 2006, 171(3), p 366–372.CrossRef C.L.M. da Silva and A. Scotti, The Influence of Double Pulse on Porosity Formation in Aluminum GMAW, J. Mater. Process. Technol., 2006, 171(3), p 366–372.CrossRef
25.
Zurück zum Zitat J. Gu, M. Gao, S. Yang, J. Bai, Y. Zhai and J. Ding, Microstructure, Defects, and Mechanical Properties of Wire + Arc Additively Manufactured Al Cu43-Mg15 Alloy, Mater. Des., 2020, 186, p 108357.CrossRef J. Gu, M. Gao, S. Yang, J. Bai, Y. Zhai and J. Ding, Microstructure, Defects, and Mechanical Properties of Wire + Arc Additively Manufactured Al Cu43-Mg15 Alloy, Mater. Des., 2020, 186, p 108357.CrossRef
26.
Zurück zum Zitat B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu and J. Norrish, A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement, J. Manuf. Process., 2018, 35, p 127–139.CrossRef B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu and J. Norrish, A Review of the Wire Arc Additive Manufacturing of Metals: Properties, Defects and Quality Improvement, J. Manuf. Process., 2018, 35, p 127–139.CrossRef
27.
Zurück zum Zitat E.M. Ryan, T.J. Sabin, J.F. Watts and M.J. Whiting, The Influence of Build Parameters and Wire Batch on Porosity of Wire and Arc Additive Manufactured Aluminium Alloy 2319, J. Mater. Process. Technol., 2018, 262, p 577–584.CrossRef E.M. Ryan, T.J. Sabin, J.F. Watts and M.J. Whiting, The Influence of Build Parameters and Wire Batch on Porosity of Wire and Arc Additive Manufactured Aluminium Alloy 2319, J. Mater. Process. Technol., 2018, 262, p 577–584.CrossRef
28.
Zurück zum Zitat B. Cong and J. Ding, Influence of CMT Process on Porosity of Wire Arc Additive Manufactured Al-Cu Alloy, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2014, 43, p 3149–3153. B. Cong and J. Ding, Influence of CMT Process on Porosity of Wire Arc Additive Manufactured Al-Cu Alloy, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2014, 43, p 3149–3153.
29.
Zurück zum Zitat J. Gu, J. Ding, B. Cong, J. Bai, H. Gu, S. Williams and Y. Zhai, The Influence of Wire Properties on the Quality and Performance of Wire+Arc Additive Manufactured Aluminium Parts, Adv. Mater. Res., 2014, 1081, p 210–214.CrossRef J. Gu, J. Ding, B. Cong, J. Bai, H. Gu, S. Williams and Y. Zhai, The Influence of Wire Properties on the Quality and Performance of Wire+Arc Additive Manufactured Aluminium Parts, Adv. Mater. Res., 2014, 1081, p 210–214.CrossRef
30.
Zurück zum Zitat Y.-T. Zhao, W.-G. Li and A. Liu, Optimization of Geometry Quality Model for Wire and Arc Additive Manufacture Based on Adaptive Multi-Objective Grey Wolf Algorithm, Soft. Comput., 2020, 24(22), p 17401–17416.CrossRef Y.-T. Zhao, W.-G. Li and A. Liu, Optimization of Geometry Quality Model for Wire and Arc Additive Manufacture Based on Adaptive Multi-Objective Grey Wolf Algorithm, Soft. Comput., 2020, 24(22), p 17401–17416.CrossRef
31.
Zurück zum Zitat A. Horgar, H. Fostervoll, B. Nyhus, X. Ren, M. Eriksson and O.M. Akselsen, Additive Manufacturing Using WAAM with AA5183 Wire, J. Mater. Process. Technol., 2018, 259, p 68–74.CrossRef A. Horgar, H. Fostervoll, B. Nyhus, X. Ren, M. Eriksson and O.M. Akselsen, Additive Manufacturing Using WAAM with AA5183 Wire, J. Mater. Process. Technol., 2018, 259, p 68–74.CrossRef
32.
Zurück zum Zitat Z. Qi, B. Cong, B. Qi, H. Sun, G. Zhao and J. Ding, Microstructure and Mechanical Properties of Double-wire + arc Additively Manufactured Al-Cu-Mg Alloys, J. Mater. Process. Technol., 2018, 255, p 347–353.CrossRef Z. Qi, B. Cong, B. Qi, H. Sun, G. Zhao and J. Ding, Microstructure and Mechanical Properties of Double-wire + arc Additively Manufactured Al-Cu-Mg Alloys, J. Mater. Process. Technol., 2018, 255, p 347–353.CrossRef
33.
Zurück zum Zitat T. Yuan, Z. Yu, S. Chen, M. Xu and X. Jiang, Loss of Elemental Mg During Wire + Arc Additive Manufacturing of Al-Mg Alloy and its Effect on Mechanical Properties, J. Manuf. Process., 2020, 49, p 456–462.CrossRef T. Yuan, Z. Yu, S. Chen, M. Xu and X. Jiang, Loss of Elemental Mg During Wire + Arc Additive Manufacturing of Al-Mg Alloy and its Effect on Mechanical Properties, J. Manuf. Process., 2020, 49, p 456–462.CrossRef
34.
Zurück zum Zitat T. Abe, D. Mori, K. Sonoya, M. Nakamura and H. Sasahara, Control of the Chemical Composition Distribution in Deposited Metal by Wire and Arc-Based Additive Manufacturing, Precis. Eng., 2019, 55, p 231–239.CrossRef T. Abe, D. Mori, K. Sonoya, M. Nakamura and H. Sasahara, Control of the Chemical Composition Distribution in Deposited Metal by Wire and Arc-Based Additive Manufacturing, Precis. Eng., 2019, 55, p 231–239.CrossRef
35.
Zurück zum Zitat T.A. Rodrigues, V.R. Duarte, R.M. Miranda, T.G. Santos and J.P. Oliveira, Ultracold-Wire and Arc Additive Manufacturing (UC-WAAM), J. Mater. Process. Technol., 2021, 296, p 117196.CrossRef T.A. Rodrigues, V.R. Duarte, R.M. Miranda, T.G. Santos and J.P. Oliveira, Ultracold-Wire and Arc Additive Manufacturing (UC-WAAM), J. Mater. Process. Technol., 2021, 296, p 117196.CrossRef
36.
Zurück zum Zitat J. Zhou, C. Jia, M. Guo, M. Chen, J. Gao and C. Wu, Investigation of the WAAM Processes Features Based on an Indirect Arc Between Two Non-consumable Electrodes, Vacuum, 2021, 183, p 109851.CrossRef J. Zhou, C. Jia, M. Guo, M. Chen, J. Gao and C. Wu, Investigation of the WAAM Processes Features Based on an Indirect Arc Between Two Non-consumable Electrodes, Vacuum, 2021, 183, p 109851.CrossRef
37.
Zurück zum Zitat C. Su, X. Chen, S. Konovalov, R. Arvind-Singh, S. Jayalakshmi and L. Huang, Effect of Deposition Strategies on the Microstructure and Tensile Properties of Wire Arc Additive Manufactured Al-5Si Alloys, J. Mater. Eng. Perform., 2021, 30(3), p 2136–2146.CrossRef C. Su, X. Chen, S. Konovalov, R. Arvind-Singh, S. Jayalakshmi and L. Huang, Effect of Deposition Strategies on the Microstructure and Tensile Properties of Wire Arc Additive Manufactured Al-5Si Alloys, J. Mater. Eng. Perform., 2021, 30(3), p 2136–2146.CrossRef
38.
Zurück zum Zitat O. Panchenko, D. Kurushkin, I. Mushnikov, A. Khismatullin and A. Popovich, A High-Performance WAAM Process for Al–Mg–Mn Using Controlled Short-Circuiting Metal Transfer At Increased Wire Feed Rate and Increased Travel Speed, Mater. Des., 2020, 195, p 109040.CrossRef O. Panchenko, D. Kurushkin, I. Mushnikov, A. Khismatullin and A. Popovich, A High-Performance WAAM Process for Al–Mg–Mn Using Controlled Short-Circuiting Metal Transfer At Increased Wire Feed Rate and Increased Travel Speed, Mater. Des., 2020, 195, p 109040.CrossRef
39.
Zurück zum Zitat C. Su, X. Chen, C. Gao and Y. Wang, Effect of Heat Input on Microstructure and Mechanical Properties of Al-Mg Alloys Fabricated by WAAM, Appl. Surf. Sci., 2019, 486, p 431–440.CrossRef C. Su, X. Chen, C. Gao and Y. Wang, Effect of Heat Input on Microstructure and Mechanical Properties of Al-Mg Alloys Fabricated by WAAM, Appl. Surf. Sci., 2019, 486, p 431–440.CrossRef
40.
Zurück zum Zitat N. Wu, C. Xia, M. Li, N. Perrusquia and S.X. Mao, Interfacial Structure and Micro and Nano-Mechanical Behavior of Laser-Welded 6061 Aluminum Alloy Blank, J. Eng. Mater. Technol., 2004, 126(1), p 8–13.CrossRef N. Wu, C. Xia, M. Li, N. Perrusquia and S.X. Mao, Interfacial Structure and Micro and Nano-Mechanical Behavior of Laser-Welded 6061 Aluminum Alloy Blank, J. Eng. Mater. Technol., 2004, 126(1), p 8–13.CrossRef
41.
Zurück zum Zitat E.L. Stevens, J. Toman, A.C. To and M. Chmielus, Variation of Hardness, Microstructure, and Laves Phase Distribution in Direct Laser Deposited Alloy 718 Cuboids, Mater. Des., 2017, 119, p 188–198.CrossRef E.L. Stevens, J. Toman, A.C. To and M. Chmielus, Variation of Hardness, Microstructure, and Laves Phase Distribution in Direct Laser Deposited Alloy 718 Cuboids, Mater. Des., 2017, 119, p 188–198.CrossRef
42.
Zurück zum Zitat M.-L. Zhu and F.-Z. Xuan, Correlation Between Microstructure, Hardness and strEngth in HAZ of Dissimilar Welds of Rotor Steels, Mater. Sci. Eng., A, 2010, 527(16–17), p 4035–4042.CrossRef M.-L. Zhu and F.-Z. Xuan, Correlation Between Microstructure, Hardness and strEngth in HAZ of Dissimilar Welds of Rotor Steels, Mater. Sci. Eng., A, 2010, 527(16–17), p 4035–4042.CrossRef
43.
Zurück zum Zitat J.R. Davis, Aluminum and Aluminum Alloys, ASM international, 1993 J.R. Davis, Aluminum and Aluminum Alloys, ASM international, 1993
44.
Zurück zum Zitat H.E. Boyer, T.L. Gall, Metals Handbook; desk edition, (1985) H.E. Boyer, T.L. Gall, Metals Handbook; desk edition, (1985)
45.
Zurück zum Zitat T. Gao, H. Liu, F. Wang and Y. Chen, Effect of Ce on the Microstructure and Mechanical Properties of 5356 Aluminum Alloy, Mater. Sci. Technol., 2016, 24(3), p 34–39. T. Gao, H. Liu, F. Wang and Y. Chen, Effect of Ce on the Microstructure and Mechanical Properties of 5356 Aluminum Alloy, Mater. Sci. Technol., 2016, 24(3), p 34–39.
46.
Zurück zum Zitat J. Gu, J. Ding, S.W. Williams, H. Gu, J. Bai, Y. Zhai and P. Ma, The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al–63 Cu Alloy, Mater. Sci. Eng., A, 2016, 651, p 18–26.CrossRef J. Gu, J. Ding, S.W. Williams, H. Gu, J. Bai, Y. Zhai and P. Ma, The Strengthening Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on the Additively Manufactured Al–63 Cu Alloy, Mater. Sci. Eng., A, 2016, 651, p 18–26.CrossRef
Metadaten
Titel
Effect of Travel Speed on the Properties of Al-Mg Aluminum Alloy Fabricated by Wire Arc Additive Manufacturing
verfasst von
M. M. Tawfik
M. M. Nemat-Alla
M. M. Dewidar
Publikationsdatum
14.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05959-y

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.