Skip to main content
Erschienen in: Rare Metals 3/2020

14.09.2019

CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water

verfasst von: Nathália Pereira Ferraz, André Esteves Nogueira, Francielle Candian Firmino Marcos, Vanessa Aguiar Machado, René Rojas Rocca, Elisabete Moreira Assaf, Yvan Jesus Olortiga Asencios

Erschienen in: Rare Metals | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The photocatalytic properties of CeO2–Nb2O5 photocatalysts in heterogeneous photocatalysis (under ultraviolet and visible radiation) and in Fenton-like process were reported. Methylene blue dye (MB) and phenol (Ph) were used as models of pollutant molecules for these reactions, and the photocatalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and thermally stimulated luminescence (TL). The results indicated that the addition of CeO2 (0.3 wt%, 1.0 wt% and 2.0 wt%) to Nb2O5 sensitized the resultant materials, increasing light absorption in the visible region. However, there is a suitable formulation of CeO2–Nb2O5 photocatalysts to improve each photocatalytic process. In heterogeneous photocatalysis, the addition of small CeO2 quantities to Nb2O5 was enough to improve the photocatalytic activity of CeO2–Nb2O5 photocatalysts (The best composition reported was CeO2 0.3 wt%.). The effectiveness of the catalyst was explained by the decrease in the number of trapping and luminescence centers in the conduction band of the material after the addition of CeO2 to Nb2O5, but a large amount of CeO2 decreased the number of trapping, luminescent and active centers to a large extent. Contrarily, in a Fenton-like process, the addition of CeO2 to Nb2O5 was favorable in all the proportions studied. (The best composition was 2.0 wt% CeO2.) In this case, the effectiveness was explained by the influence of the adsorption process (adsorption-triggered process), and the interactions between H2O2 and Ce3+ of the CeO2 in each photocatalyst thus formed surface peroxide species O22−, which induced the removal of the organic molecules under visible light.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J. 2016;284:582. Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J. 2016;284:582.
[2]
Zurück zum Zitat Ferraz NP, Marcos FCF, Nogueira AE, Martins AS, Asencios YJO. Hexagonal-Nb2O5/anatase-TiO2 mixtures and their applications in the removal of Methylene Blue dye under various conditions. Mater Chem Phys. 2017;198:331. Ferraz NP, Marcos FCF, Nogueira AE, Martins AS, Asencios YJO. Hexagonal-Nb2O5/anatase-TiO2 mixtures and their applications in the removal of Methylene Blue dye under various conditions. Mater Chem Phys. 2017;198:331.
[3]
Zurück zum Zitat Barron MA, Haber L, Maier A, Zhao J, Dourson M. Toxicological review of phenol, EPA/635/r-02/006. In: Support of Summary Information on the Integrated Risk Information System (IRIS), Washington: EPA, 2002. 2. Barron MA, Haber L, Maier A, Zhao J, Dourson M. Toxicological review of phenol, EPA/635/r-02/006. In: Support of Summary Information on the Integrated Risk Information System (IRIS), Washington: EPA, 2002. 2.
[5]
Zurück zum Zitat Choi J. Development of Visible-Light-Active Photocatalyst for Hydrogen Production and Environmental Application. Pasadena California: California Institute of Technology; 2010. 4. Choi J. Development of Visible-Light-Active Photocatalyst for Hydrogen Production and Environmental Application. Pasadena California: California Institute of Technology; 2010. 4.
[6]
Zurück zum Zitat Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3(1):189. Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3(1):189.
[7]
Zurück zum Zitat Liu Y, Szeifert JM, Feckl JM, Mandlmeier B, Rathousky J, Hayden O, Fattakhova-Rohlfing D, Bein T. Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. ACS Nano. 2010;4(9):5373. Liu Y, Szeifert JM, Feckl JM, Mandlmeier B, Rathousky J, Hayden O, Fattakhova-Rohlfing D, Bein T. Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. ACS Nano. 2010;4(9):5373.
[8]
Zurück zum Zitat Zhao Y, Eley C, Hu J, Foord JS, Ye L, He H. Shape-dependent acidity and photocatalytic activity of Nb2O5 nanocrystals with an active TT (001) surface. Angew Chem Int Ed. 2012;51(16):3846. Zhao Y, Eley C, Hu J, Foord JS, Ye L, He H. Shape-dependent acidity and photocatalytic activity of Nb2O5 nanocrystals with an active TT (001) surface. Angew Chem Int Ed. 2012;51(16):3846.
[9]
Zurück zum Zitat Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MHJ. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Mater Chem A. 2014;2(3):637. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MHJ. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Mater Chem A. 2014;2(3):637.
[10]
Zurück zum Zitat Khan MM, Ansari SA, Pradhan D, Han DH, Lee J, Hwan CM. Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res. 2014;53(23):9754. Khan MM, Ansari SA, Pradhan D, Han DH, Lee J, Hwan CM. Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res. 2014;53(23):9754.
[11]
Zurück zum Zitat Ansari SA, Khan MM, Ansari MO, Kalathil S, Lee J, Hwan CM. Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv. 2014;4:16782. Ansari SA, Khan MM, Ansari MO, Kalathil S, Lee J, Hwan CM. Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv. 2014;4:16782.
[12]
Zurück zum Zitat Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A. 2005;284(1–2):131. Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A. 2005;284(1–2):131.
[13]
Zurück zum Zitat Fajardo HV, Longo E, Probst LFD, Valentini A, Carreño NLV, Nunes MR, Maciel AP, Leite ER. Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Res Lett. 2008;3:194. Fajardo HV, Longo E, Probst LFD, Valentini A, Carreño NLV, Nunes MR, Maciel AP, Leite ER. Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Res Lett. 2008;3:194.
[14]
Zurück zum Zitat Rangaswamy A, Sudarsanam P, Reddy BM. Rare earth metal doped CeO2–based catalytic materials for diesel soot oxidation at lower temperatures. J Rare Earths. 2015;33(11):1162. Rangaswamy A, Sudarsanam P, Reddy BM. Rare earth metal doped CeO2–based catalytic materials for diesel soot oxidation at lower temperatures. J Rare Earths. 2015;33(11):1162.
[15]
Zurück zum Zitat Xie Y, Yuan C, Li X. Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation. Mater Sci Eng B. 2005;117(3):325. Xie Y, Yuan C, Li X. Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation. Mater Sci Eng B. 2005;117(3):325.
[16]
Zurück zum Zitat Gurkan YY, Turkten N, Hatipoglu A, Cinar Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: prediction of the reaction paths via conceptual DFT. Chem Eng J. 2012;184:113. Gurkan YY, Turkten N, Hatipoglu A, Cinar Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: prediction of the reaction paths via conceptual DFT. Chem Eng J. 2012;184:113.
[17]
Zurück zum Zitat Huang Y, Wei Y, Wua J, Guo C, Wang M, Yin S, Sato T. Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2−xNy coupled photocatalysts. Appl Catal B. 2012;123–124:9. Huang Y, Wei Y, Wua J, Guo C, Wang M, Yin S, Sato T. Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2−xNy coupled photocatalysts. Appl Catal B. 2012;123–124:9.
[18]
Zurück zum Zitat Martins T, Hewer T, Freire R. Cério: propriedades catalíticas, aplicações tecnológicas e ambientais. Quím Nova. 2007;30(8):2001. Martins T, Hewer T, Freire R. Cério: propriedades catalíticas, aplicações tecnológicas e ambientais. Quím Nova. 2007;30(8):2001.
[19]
Zurück zum Zitat Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep. 2016;6:31641. Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep. 2016;6:31641.
[20]
Zurück zum Zitat Khan ME, Khan MM, Cho MH. Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2–graphene nanostructures. Sci Rep. 2017;7:5928. Khan ME, Khan MM, Cho MH. Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2–graphene nanostructures. Sci Rep. 2017;7:5928.
[21]
Zurück zum Zitat Ge S, Jia H, Zhao H, Zheng Z, Zhang L. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J Mater Chem. 2010;20(15):3052. Ge S, Jia H, Zhao H, Zheng Z, Zhang L. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J Mater Chem. 2010;20(15):3052.
[22]
Zurück zum Zitat Da Silva GTST, Nogueira AE, Oliveira JA, Torres JA, Lopes OF, Ribeiro C. Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Appl Catal B. 2019;242:349. Da Silva GTST, Nogueira AE, Oliveira JA, Torres JA, Lopes OF, Ribeiro C. Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Appl Catal B. 2019;242:349.
[23]
Zurück zum Zitat Li L, Deng J, Yu R, Chen J, Wang Z, Xing XJ. Niobium pentoxide hollow nanospheres with enhanced visible light photocatalytic activity. J Mater Chem A. 2013;1(38):11894. Li L, Deng J, Yu R, Chen J, Wang Z, Xing XJ. Niobium pentoxide hollow nanospheres with enhanced visible light photocatalytic activity. J Mater Chem A. 2013;1(38):11894.
[24]
Zurück zum Zitat Rodrigues LA, Pinto da Silva MLC. Adsorção de íons fosfato em óxido de nióbio hidratado. Quim Nova. 2009;32(5):1206. Rodrigues LA, Pinto da Silva MLC. Adsorção de íons fosfato em óxido de nióbio hidratado. Quim Nova. 2009;32(5):1206.
[25]
Zurück zum Zitat Umpierres SC, Prola LDT, Adebayo MA, Lima EC, Dos Reis GS, Kunzler DDF, Dotto GL, Arenas LT, Benvenutti EV. Mesoporous Nb2O5/SiO2 material obtained by sol–gel method and applied as adsorbent of crystal violet dye. Environ Technol. 2017;38(5):566. Umpierres SC, Prola LDT, Adebayo MA, Lima EC, Dos Reis GS, Kunzler DDF, Dotto GL, Arenas LT, Benvenutti EV. Mesoporous Nb2O5/SiO2 material obtained by sol–gel method and applied as adsorbent of crystal violet dye. Environ Technol. 2017;38(5):566.
[26]
Zurück zum Zitat Stosic D, Bennici S, Raki V, Auroux A. CeO2–Nb2O5 mixed oxide catalysts: preparation, characterization and catalytic activity in fructose dehydration reaction. Catal Today. 2012;192(1):160. Stosic D, Bennici S, Raki V, Auroux A. CeO2–Nb2O5 mixed oxide catalysts: preparation, characterization and catalytic activity in fructose dehydration reaction. Catal Today. 2012;192(1):160.
[27]
Zurück zum Zitat Zhang Z. Study of the double layer CeO2/Nb2O5 thin film. J Vac Sci Technol A. 2000;18:2928. Zhang Z. Study of the double layer CeO2/Nb2O5 thin film. J Vac Sci Technol A. 2000;18:2928.
[28]
Zurück zum Zitat Jardim EO, Rico-Francés S, Abdelouahab-Reddam Z, Coloma F, Silvestre-Albero J, Sepúlveda-Escribano A, Ramos-Fernandez EV. High performance of Cu/CeO2–Nb2O5 catalysts for preferential CO oxidation and total combustion of toluene. Appl Catal A. 2015;502:129. Jardim EO, Rico-Francés S, Abdelouahab-Reddam Z, Coloma F, Silvestre-Albero J, Sepúlveda-Escribano A, Ramos-Fernandez EV. High performance of Cu/CeO2–Nb2O5 catalysts for preferential CO oxidation and total combustion of toluene. Appl Catal A. 2015;502:129.
[29]
Zurück zum Zitat Jardim EO, Rico-Francés S, Coloma F, Anderson JA, Ramos-Fernandez EV, Silvestre-Albero J, Sepúlveda-Escribano A. Preferential oxidation of CO in excess of H2 on Pt/CeO2–Nb2O5 catalysts. Appl Catal A. 2015;492:201. Jardim EO, Rico-Francés S, Coloma F, Anderson JA, Ramos-Fernandez EV, Silvestre-Albero J, Sepúlveda-Escribano A. Preferential oxidation of CO in excess of H2 on Pt/CeO2–Nb2O5 catalysts. Appl Catal A. 2015;492:201.
[30]
Zurück zum Zitat Pereira RR, Thomaz AF, Ferrier A, Goldner P, Gonçalves RR. Nanostructured rare earth doped Nb2O5: structural, optical properties and their correlation with photonic applications. J Lumin. 2016;170:707. Pereira RR, Thomaz AF, Ferrier A, Goldner P, Gonçalves RR. Nanostructured rare earth doped Nb2O5: structural, optical properties and their correlation with photonic applications. J Lumin. 2016;170:707.
[31]
Zurück zum Zitat Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5(8):3144. Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5(8):3144.
[32]
Zurück zum Zitat American Public Health Association. Method D 5530, Standard Methods for the Examination of Water and Wastewater. 17th ed. Washington: American Public Health Association; 1989. 164. American Public Health Association. Method D 5530, Standard Methods for the Examination of Water and Wastewater. 17th ed. Washington: American Public Health Association; 1989. 164.
[33]
Zurück zum Zitat U.S. Environmental Protection Agency. Method 604, Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Part VIII, 40 CFR Part 136. Appendix A. Washington: EPA. 1984. 1. U.S. Environmental Protection Agency. Method 604, Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Part VIII, 40 CFR Part 136. Appendix A. Washington: EPA. 1984. 1.
[34]
Zurück zum Zitat Sun X, Zhang H, Wei J, Yu Q, Yang P, Zhang F. Preparation of point-line Bi2WO6@TiO2 nanowires composite photocatalysts with enhanced UV/visible-light-driven photocatalytic activity. Mater Sci Semicond Process. 2016;45:51. Sun X, Zhang H, Wei J, Yu Q, Yang P, Zhang F. Preparation of point-line Bi2WO6@TiO2 nanowires composite photocatalysts with enhanced UV/visible-light-driven photocatalytic activity. Mater Sci Semicond Process. 2016;45:51.
[35]
Zurück zum Zitat Zhu CS, Zhang L, Jiang B, Zheng JT, Hu P, Li SJ, Wu MB, Wu WT. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl Surf Sci. 2016;377:99. Zhu CS, Zhang L, Jiang B, Zheng JT, Hu P, Li SJ, Wu MB, Wu WT. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl Surf Sci. 2016;377:99.
[36]
Zurück zum Zitat Xu D, Cheng B, Cao S, Yu J. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B. 2015;164:380. Xu D, Cheng B, Cao S, Yu J. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B. 2015;164:380.
[37]
Zurück zum Zitat Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32:751. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32:751.
[38]
Zurück zum Zitat Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press; 1961. 450. Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press; 1961. 450.
[39]
Zurück zum Zitat Daskalaki VM, Dou MA, Puma GL, Kondarides DI, Lianos P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol. 2010;44(19):7200. Daskalaki VM, Dou MA, Puma GL, Kondarides DI, Lianos P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol. 2010;44(19):7200.
[40]
Zurück zum Zitat Chen X, Yu T, Fan X, Zhang H, Li Z, Ye J, Zou Z. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl Surf Sci. 2007;253(20):8500. Chen X, Yu T, Fan X, Zhang H, Li Z, Ye J, Zou Z. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl Surf Sci. 2007;253(20):8500.
[41]
Zurück zum Zitat Ge S, Jia H, Zhao H, Zheng Z, Zhang L. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J Mater Chem. 2010;20(15):3052. Ge S, Jia H, Zhao H, Zheng Z, Zhang L. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J Mater Chem. 2010;20(15):3052.
[42]
Zurück zum Zitat Santos CCL, Síntese e aplicação biotecnológica de nanoestruturas de óxido de cério (IV), obtidas pelo método hidrotermal de micro-ondas, João Pessoa, Brazil: Universidade Federal da Paraiba, 2013. 10. Santos CCL, Síntese e aplicação biotecnológica de nanoestruturas de óxido de cério (IV), obtidas pelo método hidrotermal de micro-ondas, João Pessoa, Brazil: Universidade Federal da Paraiba, 2013. 10.
[43]
Zurück zum Zitat Danciu V, Popa M, Indrea E, Pascuta P, Cosoveanu V, Popescu I. Fe, Ce and Cu influence on morpho-structural and photocatalytic properties of TiO2 aerogels. Rev Roum Chim. 2010;55(7):369. Danciu V, Popa M, Indrea E, Pascuta P, Cosoveanu V, Popescu I. Fe, Ce and Cu influence on morpho-structural and photocatalytic properties of TiO2 aerogels. Rev Roum Chim. 2010;55(7):369.
[44]
Zurück zum Zitat Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells. 2006;90(12):1773. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells. 2006;90(12):1773.
[45]
Zurück zum Zitat Gonçalves KA, Tatumi SH, Rocca RR, Ventieri A. The use of TL and OSL emissions of 3Al2O3–2SiO2:Er, Yb phosphors for dose rate estimation. J Radioanal Nucl Chem. 2015;306(3):775. Gonçalves KA, Tatumi SH, Rocca RR, Ventieri A. The use of TL and OSL emissions of 3Al2O3–2SiO2:Er, Yb phosphors for dose rate estimation. J Radioanal Nucl Chem. 2015;306(3):775.
[46]
Zurück zum Zitat Guidelli EJ. Luminiscência Opticamente Estimulada em condições de Ressonância Plamônica. São Paulo: Universidade de São Paulo; 2015. 50. Guidelli EJ. Luminiscência Opticamente Estimulada em condições de Ressonância Plamônica. São Paulo: Universidade de São Paulo; 2015. 50.
[47]
Zurück zum Zitat Lousada CM, Johannes-Johansson A, Brinck T, Jonsson M. Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C. 2012;116(17):9533. Lousada CM, Johannes-Johansson A, Brinck T, Jonsson M. Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C. 2012;116(17):9533.
[48]
Zurück zum Zitat Gonzalez G, Saraiva SM, Aliaga W. Isoelectric points for niobium and vanadium pentoxides. J Dispers Sci Technol. 1994;15(2):249. Gonzalez G, Saraiva SM, Aliaga W. Isoelectric points for niobium and vanadium pentoxides. J Dispers Sci Technol. 1994;15(2):249.
[49]
Zurück zum Zitat Ziolek M, Sobczak I, Decyk P, Wolski L. The ability of Nb2O5 and Ta2O5 to generate active oxygen in contact with hydrogen peroxide. Catal Commun. 2013;37:85. Ziolek M, Sobczak I, Decyk P, Wolski L. The ability of Nb2O5 and Ta2O5 to generate active oxygen in contact with hydrogen peroxide. Catal Commun. 2013;37:85.
[50]
Zurück zum Zitat Ziolek M, Sobczak I, Decyk P, Sobanska K, Pietrzyk P, Sojka Z. Search for reactive intermediates in catalytic oxidation with hydrogen peroxide over amorphous niobium (V) and tantalum (V) oxides. Appl Catal B. 2015;164:288. Ziolek M, Sobczak I, Decyk P, Sobanska K, Pietrzyk P, Sojka Z. Search for reactive intermediates in catalytic oxidation with hydrogen peroxide over amorphous niobium (V) and tantalum (V) oxides. Appl Catal B. 2015;164:288.
[51]
Zurück zum Zitat Chen F, Shen X, Wang Y, Zhang J. CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7. Appl Catal B. 2012;121–122:223. Chen F, Shen X, Wang Y, Zhang J. CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7. Appl Catal B. 2012;121–122:223.
[52]
Zurück zum Zitat Cai WD, Chen F, Shen XX, Chen LJ, Zhang JL. Enhanced catalytic degradation of AO7 in the CeO2–H2O2 system with Fe3+ doping. Appl Catal B. 2010;101:160. Cai WD, Chen F, Shen XX, Chen LJ, Zhang JL. Enhanced catalytic degradation of AO7 in the CeO2–H2O2 system with Fe3+ doping. Appl Catal B. 2010;101:160.
[53]
Zurück zum Zitat Ji PF, Wang LZ, Chen F, Zhang JL. Ce3+ Centric organic pollutant elimination by CeO2 in the presence of H2O2. ChemCatChem. 2010;2:1552. Ji PF, Wang LZ, Chen F, Zhang JL. Ce3+ Centric organic pollutant elimination by CeO2 in the presence of H2O2. ChemCatChem. 2010;2:1552.
Metadaten
Titel
CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water
verfasst von
Nathália Pereira Ferraz
André Esteves Nogueira
Francielle Candian Firmino Marcos
Vanessa Aguiar Machado
René Rojas Rocca
Elisabete Moreira Assaf
Yvan Jesus Olortiga Asencios
Publikationsdatum
14.09.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 3/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01282-7

Weitere Artikel der Ausgabe 3/2020

Rare Metals 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.