Skip to main content
Erschienen in: Metallography, Microstructure, and Analysis 6/2021

15.11.2021 | Technical Article

Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process

verfasst von: Ismat Ara, Fardad Azarmi, X. W. Tangpong

Erschienen in: Metallography, Microstructure, and Analysis | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective laser melting (SLM) is used to fabricate nearly fully dense 316L stainless steel (SS) samples in this study. A variety of advanced characterization techniques were conducted to identify dominant phases, important crystallographic features, microstructural features, and elemental composition. Porosity of the sample was found to be 0.02% which is the lowest porosity content reported for SLM-processed 316L SS. Microstructural analysis exhibits some columnar grains with epitaxial growth representing complete adhesion between the layers. Existence of some fine cellular grains inside the melt pools is an indication of rapid solidification during the printing process. The strength of this study lies in the addition of new crystallographic information such as lattice parameters of SLM-processed 316L. Finally, using information obtained from the literature, it was possible to better understand the effect of chosen process parameters to achieve nearly fully dense material in the present study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Mater. 58(9), 3303–3312 (2010)CrossRef
2.
Zurück zum Zitat Q. Jia, D. Gu, Selective laser melting additive manufacturing of inconel 718 superalloy parts: densification microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)CrossRef Q. Jia, D. Gu, Selective laser melting additive manufacturing of inconel 718 superalloy parts: densification microstructure and properties. J. Alloys Compd. 585, 713–721 (2014)CrossRef
3.
Zurück zum Zitat I. Yadroitsev, L. Thivillon, Ph. Bertrand, I. Smurov, Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl. Surf. Sci. 254(4), 980–983 (2007)CrossRef I. Yadroitsev, L. Thivillon, Ph. Bertrand, I. Smurov, Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder. Appl. Surf. Sci. 254(4), 980–983 (2007)CrossRef
4.
Zurück zum Zitat H. S. Park, N. H. Tran, A decision support system for selecting additive manufacturing technologies. In: Proceedings of the 2017 International Conference on Information System and Data Mining (ICISDM). (Charleston SC, April 2017), pp. 151–155 H. S. Park, N. H. Tran, A decision support system for selecting additive manufacturing technologies. In: Proceedings of the 2017 International Conference on Information System and Data Mining (ICISDM). (Charleston SC, April 2017), pp. 151–155
5.
Zurück zum Zitat N.R. Baddoo, Stainless steel in construction: a review of research, applications, challenges and opportunities. J. Constr. Steel Res. 64(11), 1199–1206 (2008)CrossRef N.R. Baddoo, Stainless steel in construction: a review of research, applications, challenges and opportunities. J. Constr. Steel Res. 64(11), 1199–1206 (2008)CrossRef
6.
Zurück zum Zitat M. J. Nutt, G. L. Winters, Stainless steels for medical and surgical applications, ASTM International. STP1439, 276 (2003) M. J. Nutt, G. L. Winters, Stainless steels for medical and surgical applications, ASTM International. STP1439, 276 (2003)
7.
Zurück zum Zitat J. Kotowski, D. Šnita, Fabrication and application of stainless-steel stamps for the preparation of microfluidic devices. Microelectron. Eng. 125, 83–88 (2014)CrossRef J. Kotowski, D. Šnita, Fabrication and application of stainless-steel stamps for the preparation of microfluidic devices. Microelectron. Eng. 125, 83–88 (2014)CrossRef
8.
Zurück zum Zitat Q. Zhang, S. Wang, Influence and application of stainless steel to modern sculpture. Appl. Mech. Mater. 620, 417–420 (2014)CrossRef Q. Zhang, S. Wang, Influence and application of stainless steel to modern sculpture. Appl. Mech. Mater. 620, 417–420 (2014)CrossRef
9.
Zurück zum Zitat S. Ningshen, M. Sakairi, Corrosion degradation of AISI type 304L stainless steel for application in nuclear reprocessing plant. J. Solid State Electrochem. 19(12), 3533–3542 (2015)CrossRef S. Ningshen, M. Sakairi, Corrosion degradation of AISI type 304L stainless steel for application in nuclear reprocessing plant. J. Solid State Electrochem. 19(12), 3533–3542 (2015)CrossRef
10.
Zurück zum Zitat S. Wang, B. Yang, M. Zhang, H. Wu, The establishment and application of 316LN stainless steel database for AP1000 primary coolant pipes. Mater. Sci. Forum. 850, 341–347 (2016)CrossRef S. Wang, B. Yang, M. Zhang, H. Wu, The establishment and application of 316LN stainless steel database for AP1000 primary coolant pipes. Mater. Sci. Forum. 850, 341–347 (2016)CrossRef
11.
Zurück zum Zitat M. Yakout, M. Elbestawi, S. Veldhuis, On the characterization of stainless steel 316L parts produced by selective laser melting. Int. J. Manuf. Tech. 95(5), 1953–1974 (2018)CrossRef M. Yakout, M. Elbestawi, S. Veldhuis, On the characterization of stainless steel 316L parts produced by selective laser melting. Int. J. Manuf. Tech. 95(5), 1953–1974 (2018)CrossRef
12.
Zurück zum Zitat R. Casati, J. Lemke, M. Vedani, Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J. Mater. Sci. Technol. 32(8), 738–744 (2016)CrossRef R. Casati, J. Lemke, M. Vedani, Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting. J. Mater. Sci. Technol. 32(8), 738–744 (2016)CrossRef
13.
Zurück zum Zitat C. Qiu, M.A. Kindi, A.S. Aladawi, I.A. Hatmi, A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 8(1), 7785–7785 (2018)CrossRef C. Qiu, M.A. Kindi, A.S. Aladawi, I.A. Hatmi, A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel. Sci. Rep. 8(1), 7785–7785 (2018)CrossRef
14.
Zurück zum Zitat Z. Sun, X. Tan, S.B. Tor, C.K. Chua, Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 10(4), 127–136 (2018)CrossRef Z. Sun, X. Tan, S.B. Tor, C.K. Chua, Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Mater. 10(4), 127–136 (2018)CrossRef
15.
Zurück zum Zitat W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, S. Yusheng, Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Technol. 214(11), 2660–2667 (2014)CrossRef W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, S. Yusheng, Effect of molten pool boundaries on the mechanical properties of selective laser melting parts. J. Mater. Process. Technol. 214(11), 2660–2667 (2014)CrossRef
16.
Zurück zum Zitat M. Yoo, A. King, M. Yoo, Intergranular fracture by slip/grain boundary interaction. Mater. Trans. A. 21(a), 2431–2436 (1990)CrossRef M. Yoo, A. King, M. Yoo, Intergranular fracture by slip/grain boundary interaction. Mater. Trans. A. 21(a), 2431–2436 (1990)CrossRef
17.
Zurück zum Zitat Y. Zhong, L. Leifeng, S. Wikman, D. Cui, Z. Shen, Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 470, 170–178 (2016)CrossRef Y. Zhong, L. Leifeng, S. Wikman, D. Cui, Z. Shen, Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J. Nucl. Mater. 470, 170–178 (2016)CrossRef
18.
Zurück zum Zitat J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf Technol. 56(2), 730–759 (2007)CrossRef J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann. Manuf Technol. 56(2), 730–759 (2007)CrossRef
19.
Zurück zum Zitat M. Zhang, C.-N. Sun, X. Zhang, J. Wei, D. Hardacre, H. Li, Predictive models for fatigue property of laser powder bed fusion stainless steel 316L. Mater. Des. 145, 42–54 (2018)CrossRef M. Zhang, C.-N. Sun, X. Zhang, J. Wei, D. Hardacre, H. Li, Predictive models for fatigue property of laser powder bed fusion stainless steel 316L. Mater. Des. 145, 42–54 (2018)CrossRef
20.
Zurück zum Zitat M. Zhang, C.-N. Sun, X. Zhang, P.C. Goh, J. Wei, D. Hardacre, H. Li, Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L. Mat. Sci. Eng: A. 703, 251–261 (2017)CrossRef M. Zhang, C.-N. Sun, X. Zhang, P.C. Goh, J. Wei, D. Hardacre, H. Li, Fatigue and fracture behaviour of laser powder bed fusion stainless steel 316L. Mat. Sci. Eng: A. 703, 251–261 (2017)CrossRef
21.
Zurück zum Zitat H. Choo, K.-L. Sham, J. Bohling, A. Ngo, X. Xiao, Y. Ren, P.J. Depond, M.J. Matthews, E. Garlea, Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 164, 107534 (2019)CrossRef H. Choo, K.-L. Sham, J. Bohling, A. Ngo, X. Xiao, Y. Ren, P.J. Depond, M.J. Matthews, E. Garlea, Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel. Mater. Des. 164, 107534 (2019)CrossRef
22.
Zurück zum Zitat J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Tech. 76, 869–79 (2015)CrossRef J.A. Cherry, H.M. Davies, S. Mehmood, N.P. Lavery, S.G.R. Brown, J. Sienz, Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Tech. 76, 869–79 (2015)CrossRef
23.
Zurück zum Zitat S. Liu, Balling behavior of selective laser melting (Selective laser melting) magnesium alloy. Materials. 13, 3632 (2020)CrossRef S. Liu, Balling behavior of selective laser melting (Selective laser melting) magnesium alloy. Materials. 13, 3632 (2020)CrossRef
24.
Zurück zum Zitat D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849–3860 (2012)CrossRef D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849–3860 (2012)CrossRef
25.
Zurück zum Zitat R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. 59, 1025–1035 (2012)CrossRef R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. 59, 1025–1035 (2012)CrossRef
26.
Zurück zum Zitat E. Yasa, J.P. Kruth, Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Elsevier Procedia Eng. 19, 389–395 (2011)CrossRef E. Yasa, J.P. Kruth, Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Elsevier Procedia Eng. 19, 389–395 (2011)CrossRef
27.
Zurück zum Zitat W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, V. Hansen, Investigation of effects of process parameters on microstructure and Hardness of selective laser melting manufactured SS316L. J. Alloys Compd. 740, 910–925 (2018)CrossRef W.M. Tucho, V.H. Lysne, H. Austbø, A. Sjolyst-Kverneland, V. Hansen, Investigation of effects of process parameters on microstructure and Hardness of selective laser melting manufactured SS316L. J. Alloys Compd. 740, 910–925 (2018)CrossRef
28.
Zurück zum Zitat Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S.M.L. Nai, J. Wei, High Mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting. J. Mater. Sci. Technol. 35(2), 388–394 (2019)CrossRef Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S.M.L. Nai, J. Wei, High Mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting. J. Mater. Sci. Technol. 35(2), 388–394 (2019)CrossRef
29.
Zurück zum Zitat J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mechanical behavior of selective laser melted 316L stainless steel. Mat. Sci. Eng. A. 696, 113–121 (2017)CrossRef J. Suryawanshi, K.G. Prashanth, U. Ramamurty, Mechanical behavior of selective laser melted 316L stainless steel. Mat. Sci. Eng. A. 696, 113–121 (2017)CrossRef
30.
Zurück zum Zitat E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, Effect of selective laser melting (Selective laser melting) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol. 249, 255–263 (2017)CrossRef E. Liverani, S. Toschi, L. Ceschini, A. Fortunato, Effect of selective laser melting (Selective laser melting) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol. 249, 255–263 (2017)CrossRef
31.
Zurück zum Zitat T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mat. Sci. Eng. A. 718, 64–73 (2018)CrossRef T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, E. Chlebus, Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Mat. Sci. Eng. A. 718, 64–73 (2018)CrossRef
32.
Zurück zum Zitat T. Deb Roy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components: process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef T. Deb Roy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components: process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef
33.
Zurück zum Zitat A.H. Puichaud, C. Flament, A. Chniouel, F. Lomello, E. Rouesne, P.F. Giroux, H. Maskrot, F. Schuster, J.L. Béchade, Microstructure and mechanical properties relationship of additively manufactured 316L stainless steel by selective laser melting. EPJ N. 5, 23 (2019) A.H. Puichaud, C. Flament, A. Chniouel, F. Lomello, E. Rouesne, P.F. Giroux, H. Maskrot, F. Schuster, J.L. Béchade, Microstructure and mechanical properties relationship of additively manufactured 316L stainless steel by selective laser melting. EPJ N. 5, 23 (2019)
34.
Zurück zum Zitat J. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2(3), 157–167 (2017)CrossRef J. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting. Prog. Addit. Manuf. 2(3), 157–167 (2017)CrossRef
35.
Zurück zum Zitat T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson- Heid, A. De, W. Zhang, Additive manufacturing of metallic components: process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson- Heid, A. De, W. Zhang, Additive manufacturing of metallic components: process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018)CrossRef
36.
Zurück zum Zitat K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting? Meter. Res. Lett. 5, 386–390 (2017)CrossRef K.G. Prashanth, S. Scudino, T. Maity, J. Das, J. Eckert, Is the energy density a reliable parameter for materials synthesis by selective laser melting? Meter. Res. Lett. 5, 386–390 (2017)CrossRef
37.
Zurück zum Zitat L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa, M.M. Attallah, Process optimisation of selective laser melting using energy density model for nickel-based superalloys. Mater. Sci. Technol. 32, 657–661 (2016)CrossRef L.N. Carter, X. Wang, N. Read, R. Khan, M. Aristizabal, K. Essa, M.M. Attallah, Process optimisation of selective laser melting using energy density model for nickel-based superalloys. Mater. Sci. Technol. 32, 657–661 (2016)CrossRef
38.
Zurück zum Zitat Standard Practice for Microetching Metals and Alloys, ASTM International E407-07, West Conshohocken, (2015) Standard Practice for Microetching Metals and Alloys, ASTM International E407-07, West Conshohocken, (2015)
39.
Zurück zum Zitat Standard Test Methods for Determining Average Grain Size, ASTM International E112- 13, West Conshohocken, (2013) Standard Test Methods for Determining Average Grain Size, ASTM International E112- 13, West Conshohocken, (2013)
40.
Zurück zum Zitat Standard Test Method for Metallic and Inorganic Coatings; Metal powders and metal powder products, ASTM B311-17, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 2010, vol. 02.05 Standard Test Method for Metallic and Inorganic Coatings; Metal powders and metal powder products, ASTM B311-17, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 2010, vol. 02.05
41.
Zurück zum Zitat J.P. Choi, G.H. Shin, M. Brochu, Y.J. Kim, S.S. Yang, K.T. Kim, D.Y. Yang, C.W. Lee, J.H. Yul, Behavior of 316L stainless steel parts fabricated by selective laser melting by variation in laser energy density. Mater. Trans. 57, 1952–1959 (2016)CrossRef J.P. Choi, G.H. Shin, M. Brochu, Y.J. Kim, S.S. Yang, K.T. Kim, D.Y. Yang, C.W. Lee, J.H. Yul, Behavior of 316L stainless steel parts fabricated by selective laser melting by variation in laser energy density. Mater. Trans. 57, 1952–1959 (2016)CrossRef
42.
Zurück zum Zitat B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company Inc., Massachusetts, USA, 1959) B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Publishing Company Inc., Massachusetts, USA, 1959)
43.
Zurück zum Zitat D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting mater. Mater. Des. 152, 88–101 (2018)CrossRef D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng, X. Li, Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting mater. Mater. Des. 152, 88–101 (2018)CrossRef
44.
Zurück zum Zitat H. Gong, D. Snelling, K. Kardel, A. Carrano, Comparison of stainless steel 316L parts made by FDM- and SLM-based additive manufacturing processes. JOM. 71, 880–885 (2019)CrossRef H. Gong, D. Snelling, K. Kardel, A. Carrano, Comparison of stainless steel 316L parts made by FDM- and SLM-based additive manufacturing processes. JOM. 71, 880–885 (2019)CrossRef
45.
Zurück zum Zitat X. Yang, Y. Liu, J. Ye, R. Wang, T. Zhou, B. Mao, Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting. Int. J. Miner. Metall. Mater. 26, 1396–1404 (2019)CrossRef X. Yang, Y. Liu, J. Ye, R. Wang, T. Zhou, B. Mao, Enhanced mechanical properties and formability of 316L stainless steel materials 3D-printed using selective laser melting. Int. J. Miner. Metall. Mater. 26, 1396–1404 (2019)CrossRef
46.
Zurück zum Zitat M. Kazemipour, M. Mohammadi, E. Mfoumou, A.M. Nasiri, Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: the impact of process-induced porosities. JOM. 71, 3230–3240 (2019)CrossRef M. Kazemipour, M. Mohammadi, E. Mfoumou, A.M. Nasiri, Microstructure and corrosion characteristics of selective laser-melted 316L stainless steel: the impact of process-induced porosities. JOM. 71, 3230–3240 (2019)CrossRef
47.
Zurück zum Zitat P. Krakhmalev, G. Fredrikhsson, S. Krister, I. Yadroitsev, I. Yadroitsava, M. Thuvander, R. Peng, Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion. Metals. 8(8), 643 (2018)CrossRef P. Krakhmalev, G. Fredrikhsson, S. Krister, I. Yadroitsev, I. Yadroitsava, M. Thuvander, R. Peng, Microstructure, solidification texture, and thermal stability of 316 L stainless steel manufactured by laser powder bed fusion. Metals. 8(8), 643 (2018)CrossRef
48.
Zurück zum Zitat A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, T. Niendorf, On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 120, 15–25 (2014)CrossRef A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, T. Niendorf, On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting. Eng. Fract. Mech. 120, 15–25 (2014)CrossRef
49.
Zurück zum Zitat J.M. Jeon, J.M. Park, J. Yu, J.G. Kim, Y. Seong, S.H. Park, H.S. Kim, Effects of microstructure and internal defects on mechanical anisotropy and asymmetry of selective laser-melted 316L austenitic stainless steel. Mater. Sci. Eng. A. 763, 138152 (2019)CrossRef J.M. Jeon, J.M. Park, J. Yu, J.G. Kim, Y. Seong, S.H. Park, H.S. Kim, Effects of microstructure and internal defects on mechanical anisotropy and asymmetry of selective laser-melted 316L austenitic stainless steel. Mater. Sci. Eng. A. 763, 138152 (2019)CrossRef
50.
Zurück zum Zitat J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding. Mater. Sci. Eng. A. 676, 395–405 (2016)CrossRef J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, J.C. Feng, Effect of location on microstructure and mechanical properties of additive layer manufactured inconel 625 using gas tungsten arc welding. Mater. Sci. Eng. A. 676, 395–405 (2016)CrossRef
51.
Zurück zum Zitat J. Yang, H. Yu, H. Yang, F. Li, Z. Wang, X. Zeng, Prediction of microstructure in selective laser melted Ti-6Al-4V alloy by cellular automaton. J. Alloys Compd. 748, 281 (2018)CrossRef J. Yang, H. Yu, H. Yang, F. Li, Z. Wang, X. Zeng, Prediction of microstructure in selective laser melted Ti-6Al-4V alloy by cellular automaton. J. Alloys Compd. 748, 281 (2018)CrossRef
52.
Zurück zum Zitat S.D. Jadhav, S. Dadbakhsh, L. Goossens, J.-P. Kruth, J. Van Humbeeck, K. Vanmeensel, Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 270, 47–58 (2019)CrossRef S.D. Jadhav, S. Dadbakhsh, L. Goossens, J.-P. Kruth, J. Van Humbeeck, K. Vanmeensel, Influence of selective laser melting process parameters on texture evolution in pure copper. J. Mater. Process. Technol. 270, 47–58 (2019)CrossRef
53.
Zurück zum Zitat L. Thijs, K. Kempen, J.-P. Kruth, V.J. Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61(5), 1809–1819 (2012)CrossRef L. Thijs, K. Kempen, J.-P. Kruth, V.J. Humbeeck, Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 61(5), 1809–1819 (2012)CrossRef
54.
Zurück zum Zitat T. Niendorf, S. Leuders, A. Reimer, H. Richard, T. Tröster, D. Schwarze, Highly anisotropic steel processed by selective laser melting. Metall. Mater. Trans. B. 44(4), 794–796 (2013)CrossRef T. Niendorf, S. Leuders, A. Reimer, H. Richard, T. Tröster, D. Schwarze, Highly anisotropic steel processed by selective laser melting. Metall. Mater. Trans. B. 44(4), 794–796 (2013)CrossRef
55.
Zurück zum Zitat K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A. 625, 221–229 (2015)CrossRef K. Saeidi, X. Gao, Y. Zhong, Z.J. Shen, Hardened austenite steel with columnar sub-grain structure formed by laser melting. Mater. Sci. Eng. A. 625, 221–229 (2015)CrossRef
56.
Zurück zum Zitat O.O. Salman, F. Brenne, T. Niendorf, J. Eckert, K.G. Prashanth, T. He, S. Scudino, Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J. Manuf. Process. 45, 255–261 (2019)CrossRef O.O. Salman, F. Brenne, T. Niendorf, J. Eckert, K.G. Prashanth, T. He, S. Scudino, Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting. J. Manuf. Process. 45, 255–261 (2019)CrossRef
57.
Zurück zum Zitat J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J. V. Humbeeck, Part and material properties in selective laser melting of metals In: 16th International Symposium on Electromachining. Proceeding of 16th International Symposium on Electromachining, Shanghai (2010) J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J. V. Humbeeck, Part and material properties in selective laser melting of metals In: 16th International Symposium on Electromachining. Proceeding of 16th International Symposium on Electromachining, Shanghai (2010)
58.
Zurück zum Zitat R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A. Rashid, M. Brandt, Effect of scan strategy on density and metallurgical properties of 17–4PH parts printed by selective laser melting (Selective laser melting). J. Mater. Process. Tech. 249, 502–511 (2017)CrossRef R. Rashid, S.H. Masood, D. Ruan, S. Palanisamy, R.A. Rashid, M. Brandt, Effect of scan strategy on density and metallurgical properties of 17–4PH parts printed by selective laser melting (Selective laser melting). J. Mater. Process. Tech. 249, 502–511 (2017)CrossRef
59.
Zurück zum Zitat D. Wang, W. Shibiao, Y. Yongqiang, D. Wenhao, D. Shishi, W. Zhi, L. Sheng, The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (selective laser melting). Materials. 11(10), 1821 (2018)CrossRef D. Wang, W. Shibiao, Y. Yongqiang, D. Wenhao, D. Shishi, W. Zhi, L. Sheng, The effect of a scanning strategy on the residual stress of 316L steel parts fabricated by selective laser melting (selective laser melting). Materials. 11(10), 1821 (2018)CrossRef
60.
Zurück zum Zitat D. Wang, C. Song, Y. Yang, Y. Bai, Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 100, 291–299 (2016)CrossRef D. Wang, C. Song, Y. Yang, Y. Bai, Investigation of crystal growth mechanism during selective laser melting and mechanical property characterization of 316L stainless steel parts. Mater. Des. 100, 291–299 (2016)CrossRef
61.
Zurück zum Zitat T. Peng, C. Chen, Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int. J. Precis. Eng. Manuf. Green Technol. 5(1), 55–62 (2018)CrossRef T. Peng, C. Chen, Influence of energy density on energy demand and porosity of 316L stainless steel fabricated by selective laser melting. Int. J. Precis. Eng. Manuf. Green Technol. 5(1), 55–62 (2018)CrossRef
62.
Zurück zum Zitat P. Lu, Z. Cheng-Lin, L. Hai-Yi, W. Liang, L. Tong, A new two-step selective laser remelting of 316L stainless steel: process, density, surface roughness, mechanical properties, microstructure. Mater. Res. Expr. 7(5), 056503 (2020)CrossRef P. Lu, Z. Cheng-Lin, L. Hai-Yi, W. Liang, L. Tong, A new two-step selective laser remelting of 316L stainless steel: process, density, surface roughness, mechanical properties, microstructure. Mater. Res. Expr. 7(5), 056503 (2020)CrossRef
63.
Zurück zum Zitat Z. Sun, X. Tan, S. Beng Tor, W. Yee Yeong, Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Des. 104, 197–204 (2016)CrossRef Z. Sun, X. Tan, S. Beng Tor, W. Yee Yeong, Selective laser melting of stainless steel 316L with low porosity and high build rates. Mater. Des. 104, 197–204 (2016)CrossRef
64.
Zurück zum Zitat Q. Chao, S. Thomas, N. Birbilis, P. Cizek, P.D. Hodgson, D. Fabijanic, The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A. 821, 0921–5093 (2021)CrossRef Q. Chao, S. Thomas, N. Birbilis, P. Cizek, P.D. Hodgson, D. Fabijanic, The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A. 821, 0921–5093 (2021)CrossRef
65.
Zurück zum Zitat A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metall. 57(3), 184–189 (2014)CrossRef A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, J. Lecomte-Beckers, Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures. Powder Metall. 57(3), 184–189 (2014)CrossRef
66.
Zurück zum Zitat H.D. Carlton, A. Haboub, G.F. Gallegos, D.Y. Parkinson, A.A. MacDowell, Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater. Sci. Eng. A. 651, 406–414 (2016)CrossRef H.D. Carlton, A. Haboub, G.F. Gallegos, D.Y. Parkinson, A.A. MacDowell, Damage evolution and failure mechanisms in additively manufactured stainless steel. Mater. Sci. Eng. A. 651, 406–414 (2016)CrossRef
67.
Zurück zum Zitat W.S. Shin, B. Son, W. Song, H. Sohn, H. Jang, Y.J. Kim, C. Park, Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Mater. Sci. Eng. A. 806, 140805 (2021)CrossRef W.S. Shin, B. Son, W. Song, H. Sohn, H. Jang, Y.J. Kim, C. Park, Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Mater. Sci. Eng. A. 806, 140805 (2021)CrossRef
68.
Zurück zum Zitat I. Yadroitsev, I. Smurov, Selective laser melting technology: from the single laser melted track stability to 3d parts of complex shape. Phys Procedia. 5, 551–560 (2010)CrossRef I. Yadroitsev, I. Smurov, Selective laser melting technology: from the single laser melted track stability to 3d parts of complex shape. Phys Procedia. 5, 551–560 (2010)CrossRef
69.
Zurück zum Zitat S. Dadbakhsh, L. Hao, N. Sewell, Effect of selective laser melting layout on the quality of stainless-steel parts. Rapid Prototyp J. 18, 241–249 (2012)CrossRef S. Dadbakhsh, L. Hao, N. Sewell, Effect of selective laser melting layout on the quality of stainless-steel parts. Rapid Prototyp J. 18, 241–249 (2012)CrossRef
70.
Zurück zum Zitat U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.P.R. Delplanque, J.M. Schoenung, On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater. Des. 113, 331–340 (2017)CrossRef U.S. Bertoli, A.J. Wolfer, M.J. Matthews, J.P.R. Delplanque, J.M. Schoenung, On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater. Des. 113, 331–340 (2017)CrossRef
71.
Zurück zum Zitat W. Chen, G. Yin, Z. Feng, X. Liao, Effect of powder feedstock on microstructure and mechanical properties of the 316L stainless steel fabricated by selective laser melting. Metals. 8(9), 729 (2018)CrossRef W. Chen, G. Yin, Z. Feng, X. Liao, Effect of powder feedstock on microstructure and mechanical properties of the 316L stainless steel fabricated by selective laser melting. Metals. 8(9), 729 (2018)CrossRef
72.
Zurück zum Zitat H. Yu, J. Yang, J. Yin, Z. Wang, X. Zeng, Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel. Mater. Sci. Eng. A. 695, 92–100 (2017)CrossRef H. Yu, J. Yang, J. Yin, Z. Wang, X. Zeng, Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel. Mater. Sci. Eng. A. 695, 92–100 (2017)CrossRef
73.
Zurück zum Zitat N. Takata, R. Nishida, A. Suzuki, M. Kobashi, M. Kato, Crystallographic features of microstructure in maraging steel fabricated by selective laser melting. Metals. 8(6), 440 (2018)CrossRef N. Takata, R. Nishida, A. Suzuki, M. Kobashi, M. Kato, Crystallographic features of microstructure in maraging steel fabricated by selective laser melting. Metals. 8(6), 440 (2018)CrossRef
74.
Zurück zum Zitat X. Ni, D. Kong, Y. Wen, L. Zhang, W. Wu, B. He, L. Lu, D. Zhu, Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting. Int. J. Miner. Metall. Mater. 26, 319–328 (2019)CrossRef X. Ni, D. Kong, Y. Wen, L. Zhang, W. Wu, B. He, L. Lu, D. Zhu, Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting. Int. J. Miner. Metall. Mater. 26, 319–328 (2019)CrossRef
Metadaten
Titel
Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process
verfasst von
Ismat Ara
Fardad Azarmi
X. W. Tangpong
Publikationsdatum
15.11.2021
Verlag
Springer US
Erschienen in
Metallography, Microstructure, and Analysis / Ausgabe 6/2021
Print ISSN: 2192-9262
Elektronische ISSN: 2192-9270
DOI
https://doi.org/10.1007/s13632-021-00798-8

Weitere Artikel der Ausgabe 6/2021

Metallography, Microstructure, and Analysis 6/2021 Zur Ausgabe

Feature

MicroArt

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.