Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2018

22.02.2018 | SPECIAL ISSUE: SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE 2017, INVITED PAPER

In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy

verfasst von: Matthew Carl, Brian Van Doren, Marcus L. Young

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678CrossRef
2.
Zurück zum Zitat Buehler WJ, Gilfrich J, Wiley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef Buehler WJ, Gilfrich J, Wiley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef
3.
Zurück zum Zitat Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Mohd Jani J, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
4.
Zurück zum Zitat Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng 273–275:149–160CrossRef Duerig T, Pelton A, Stöckel D (1999) An overview of nitinol medical applications. Mater Sci Eng 273–275:149–160CrossRef
5.
Zurück zum Zitat Pelton A, Duerig T, Stöckel D (2004) A guide to shape memory and superelasticity in Nitinol medical devices. Minim Invasive Ther Allied Technol 13(4):218–221CrossRef Pelton A, Duerig T, Stöckel D (2004) A guide to shape memory and superelasticity in Nitinol medical devices. Minim Invasive Ther Allied Technol 13(4):218–221CrossRef
6.
Zurück zum Zitat Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng 273–275:134–148CrossRef Van Humbeeck J (1999) Non-medical applications of shape memory alloys. Mater Sci Eng 273–275:134–148CrossRef
7.
Zurück zum Zitat Benafan O, Brown J, Calkins F, Kumar P, Stebner A, Turner T, Vaidyanathan R, Webster J, Young M (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42CrossRef Benafan O, Brown J, Calkins F, Kumar P, Stebner A, Turner T, Vaidyanathan R, Webster J, Young M (2014) Shape memory alloy actuator design: CASMART collaborative best practices and case studies. Int J Mech Mater Des 10(1):1–42CrossRef
8.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng 221(4):535–552CrossRef Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng 221(4):535–552CrossRef
9.
Zurück zum Zitat Calkins F, Mabe J, Ruggeri R (2008) Overview of Boeing’s shape memory alloy based morphing aerostructures. In: Proceedings of ASME 2008 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers, pp 885–895 Calkins F, Mabe J, Ruggeri R (2008) Overview of Boeing’s shape memory alloy based morphing aerostructures. In: Proceedings of ASME 2008 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers, pp 885–895
10.
Zurück zum Zitat Wheeler RW, Benafan O, Gao X, Calkins FT, Ghanbari Z, Hommer G, Lagoudas D, Petersen A, Pless JM, Stebner AP, Turner TL (2016) Engineering design tools for shape memory alloy actuators: CASMART collaborative best practices and case studies. In: Proceeding of ASME 2016 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers. https://doi.org/10.1115/SMASIS2016-9183 Wheeler RW, Benafan O, Gao X, Calkins FT, Ghanbari Z, Hommer G, Lagoudas D, Petersen A, Pless JM, Stebner AP, Turner TL (2016) Engineering design tools for shape memory alloy actuators: CASMART collaborative best practices and case studies. In: Proceeding of ASME 2016 conference on smart materials, adaptive structures and intelligent systems. American Society of Mechanical Engineers. https://​doi.​org/​10.​1115/​SMASIS2016-9183
11.
Zurück zum Zitat Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55(5):257–315CrossRef
12.
Zurück zum Zitat Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng 378(1–2):2–10CrossRef Firstov GS, Van Humbeeck J, Koval YN (2004) High-temperature shape memory alloys: some recent developments. Mater Sci Eng 378(1–2):2–10CrossRef
13.
Zurück zum Zitat Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary nitix high-temperature shape memory alloys. Shap Mem Superelasticity 2(1):62–79CrossRef Bucsek AN, Hudish GA, Bigelow GS, Noebe RD, Stebner AP (2016) Composition, compatibility, and the functional performances of ternary nitix high-temperature shape memory alloys. Shap Mem Superelasticity 2(1):62–79CrossRef
14.
Zurück zum Zitat Benafan O, Noebe R, Padula S II, Vaidyanathan R (2012) Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni-29.7 Ti-20Hf high-temperature shape memory alloy. Metall Mater Trans A 43(12):4539–4552CrossRef Benafan O, Noebe R, Padula S II, Vaidyanathan R (2012) Microstructural response during isothermal and isobaric loading of a precipitation-strengthened Ni-29.7 Ti-20Hf high-temperature shape memory alloy. Metall Mater Trans A 43(12):4539–4552CrossRef
15.
Zurück zum Zitat Hornbuckle BC, Sasaki TT, Bigelow GS, Noebe RD, Weaver ML, Thompson GB (2015) Structure–property relationships in a precipitation strengthened Ni–29.7Ti–20Hf (at%) shape memory alloy. Mater Sci Eng 637:63–69CrossRef Hornbuckle BC, Sasaki TT, Bigelow GS, Noebe RD, Weaver ML, Thompson GB (2015) Structure–property relationships in a precipitation strengthened Ni–29.7Ti–20Hf (at%) shape memory alloy. Mater Sci Eng 637:63–69CrossRef
16.
Zurück zum Zitat Wheeler RW, Hartl DJ, Chemisky Y, Lagoudas DC (2015) Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Int Soc Opt Photonics. https://doi.org/10.1115/SMASIS2015-9040 Wheeler RW, Hartl DJ, Chemisky Y, Lagoudas DC (2015) Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. Int Soc Opt Photonics. https://​doi.​org/​10.​1115/​SMASIS2015-9040
17.
Zurück zum Zitat Karaca H, Acar E, Tobe H, Saghaian S (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef Karaca H, Acar E, Tobe H, Saghaian S (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef
18.
Zurück zum Zitat Prasher M, Sen D (2014) Influence of aging on phase transformation and microstructure of Ni50.3Ti29.7Hf20 high temperature shape memory alloy. J Alloys Compd 615:469–474CrossRef Prasher M, Sen D (2014) Influence of aging on phase transformation and microstructure of Ni50.3Ti29.7Hf20 high temperature shape memory alloy. J Alloys Compd 615:469–474CrossRef
19.
Zurück zum Zitat Coughlin DR, Phillips PJ, Bigelow GS, Garg A, Noebe RD, Mills MJ (2012) Characterization of the microstructure and mechanical properties of a 50.3Ni–29.7Ti–20Hf shape memory alloy. Scripta Mater 67(1):112–115CrossRef Coughlin DR, Phillips PJ, Bigelow GS, Garg A, Noebe RD, Mills MJ (2012) Characterization of the microstructure and mechanical properties of a 50.3Ni–29.7Ti–20Hf shape memory alloy. Scripta Mater 67(1):112–115CrossRef
20.
Zurück zum Zitat Sehitoglu H, Wu Y, Patriarca L (2017) Shape memory functionality under multi-cycles in NiTiHf. Scripta Mater 129:11–15CrossRef Sehitoglu H, Wu Y, Patriarca L (2017) Shape memory functionality under multi-cycles in NiTiHf. Scripta Mater 129:11–15CrossRef
22.
Zurück zum Zitat Wu Y, Patriarca L, Sehitoglu H, Chumlyakov Y (2016) Ultrahigh tensile transformation strains in new Ni 50.5 Ti 36.2 Hf 13.3 shape memory alloy. Scripta Mater 118:51–54CrossRef Wu Y, Patriarca L, Sehitoglu H, Chumlyakov Y (2016) Ultrahigh tensile transformation strains in new Ni 50.5 Ti 36.2 Hf 13.3 shape memory alloy. Scripta Mater 118:51–54CrossRef
23.
Zurück zum Zitat Eckelmeyer K (1976) The effect of alloying on the shape memory phenomenon in nitinol. Scr Metall 10(8):667–672CrossRef Eckelmeyer K (1976) The effect of alloying on the shape memory phenomenon in nitinol. Scr Metall 10(8):667–672CrossRef
24.
Zurück zum Zitat David NIA, Thoma PE, Kao M-Y, Angst DR (1992) High transformation temperature shape memory alloy. Google Patents, US5114504A David NIA, Thoma PE, Kao M-Y, Angst DR (1992) High transformation temperature shape memory alloy. Google Patents, US5114504A
25.
Zurück zum Zitat Hsieh S, Wu S (1998) A study on lattice parameters of martensite in Ti 50.5–x Ni 49.5 Zr x shape memory alloys. J Alloys Compd 270(1):237–241CrossRef Hsieh S, Wu S (1998) A study on lattice parameters of martensite in Ti 50.5–x Ni 49.5 Zr x shape memory alloys. J Alloys Compd 270(1):237–241CrossRef
26.
Zurück zum Zitat Hsieh SF, Wu SK (1998) Room-temperature phases observed in Ti53–xNi47Zrx high-temperature shape memory alloys. J Alloys Compd 266(1–2):276–282CrossRef Hsieh SF, Wu SK (1998) Room-temperature phases observed in Ti53–xNi47Zrx high-temperature shape memory alloys. J Alloys Compd 266(1–2):276–282CrossRef
27.
Zurück zum Zitat Pu ZJ, Tseng H-K, Wu K-H (1995) Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys. In: Proceeding of SPIE, smart structures and materials 1995: smart materials, vol 2441. International Society for Optics and Photonics, pp 171–179. https://doi.org/10.1117/12.209815 Pu ZJ, Tseng H-K, Wu K-H (1995) Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys. In: Proceeding of SPIE, smart structures and materials 1995: smart materials, vol 2441. International Society for Optics and Photonics, pp 171–179. https://​doi.​org/​10.​1117/​12.​209815
28.
Zurück zum Zitat Sandu AM, Tsuchiya K, Yamamoto S, Todaka Y, Umemoto M (2006) Influence of isothermal ageing on mechanical behaviour in Ni-rich Ti–Zr–Ni shape memory alloy. Scripta Mater 55(12):1079–1082CrossRef Sandu AM, Tsuchiya K, Yamamoto S, Todaka Y, Umemoto M (2006) Influence of isothermal ageing on mechanical behaviour in Ni-rich Ti–Zr–Ni shape memory alloy. Scripta Mater 55(12):1079–1082CrossRef
29.
Zurück zum Zitat Sandu AM, Tsuchiya K, Tabuchi M, Yamamoto S, Todaka Y, Umemoto M (2007) Microstructural evolution during isothermal aging in Ni-Rich Ti-Zr-Ni shape memory alloys. Mater Trans 48(3):432–438CrossRef Sandu AM, Tsuchiya K, Tabuchi M, Yamamoto S, Todaka Y, Umemoto M (2007) Microstructural evolution during isothermal aging in Ni-Rich Ti-Zr-Ni shape memory alloys. Mater Trans 48(3):432–438CrossRef
30.
Zurück zum Zitat Han XD, Wang R, Zhang Z, Yang DZ (1998) A new precipitate phase in a TiNiHf high temperature shape memory alloy. Acta Mater 46(1):273–281CrossRef Han XD, Wang R, Zhang Z, Yang DZ (1998) A new precipitate phase in a TiNiHf high temperature shape memory alloy. Acta Mater 46(1):273–281CrossRef
31.
Zurück zum Zitat Evirgen A, Karaman I, Noebe R, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and the shape memory response of the Ni 50.3 Ti 29.7 Zr 20 high temperature shape memory alloy. Scripta Mater 69(5):354–357CrossRef Evirgen A, Karaman I, Noebe R, Santamarta R, Pons J (2013) Effect of precipitation on the microstructure and the shape memory response of the Ni 50.3 Ti 29.7 Zr 20 high temperature shape memory alloy. Scripta Mater 69(5):354–357CrossRef
32.
Zurück zum Zitat Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121:374–383CrossRef Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121:374–383CrossRef
33.
Zurück zum Zitat Meng X, Cai W, Zheng Y, Zhao L (2006) Phase transformation and precipitation in aged Ti–Ni–Hf high-temperature shape memory alloys. Mater Sci Eng 438:666–670CrossRef Meng X, Cai W, Zheng Y, Zhao L (2006) Phase transformation and precipitation in aged Ti–Ni–Hf high-temperature shape memory alloys. Mater Sci Eng 438:666–670CrossRef
34.
Zurück zum Zitat Pérez-Sierra AM, Pons J, Santamarta R, Karaman I, Noebe RD (2016) Stability of a Ni-rich Ni-Ti-Zr high temperature shape memory alloy upon low temperature aging and thermal cycling. Scripta Mater 124:47–50CrossRef Pérez-Sierra AM, Pons J, Santamarta R, Karaman I, Noebe RD (2016) Stability of a Ni-rich Ni-Ti-Zr high temperature shape memory alloy upon low temperature aging and thermal cycling. Scripta Mater 124:47–50CrossRef
35.
Zurück zum Zitat Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy. Acta Mater 61(9):3335–3346CrossRef Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy. Acta Mater 61(9):3335–3346CrossRef
36.
Zurück zum Zitat Saghaian SM, Karaca HE, Tobe H, Pons J, Santamarta R, Chumlyakov YI, Noebe RD (2016) Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys. Smart Mater Struct 25(9):095029CrossRef Saghaian SM, Karaca HE, Tobe H, Pons J, Santamarta R, Chumlyakov YI, Noebe RD (2016) Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys. Smart Mater Struct 25(9):095029CrossRef
37.
Zurück zum Zitat Thoma PE, Boehm JJ (1999) Effect of composition on the amount of second phase and transformation temperatures of Ni x Ti 90–x Hf 10 shape memory alloys. Mater Sci Eng 273:385–389CrossRef Thoma PE, Boehm JJ (1999) Effect of composition on the amount of second phase and transformation temperatures of Ni x Ti 90–x Hf 10 shape memory alloys. Mater Sci Eng 273:385–389CrossRef
38.
Zurück zum Zitat Carl M, Smith JD, Doren B, Young ML (2017) Young, effect of Ni-content on the transformation temperatures in NiTi-20 at.% Zr high temperature shape memory alloys. Metals 7(11):511CrossRef Carl M, Smith JD, Doren B, Young ML (2017) Young, effect of Ni-content on the transformation temperatures in NiTi-20 at.% Zr high temperature shape memory alloys. Metals 7(11):511CrossRef
39.
Zurück zum Zitat Firstov G, Vitchev R, Kumar H, Blanpain B, Van Humbeeck J (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23(24):4863–4871CrossRef Firstov G, Vitchev R, Kumar H, Blanpain B, Van Humbeeck J (2002) Surface oxidation of NiTi shape memory alloy. Biomaterials 23(24):4863–4871CrossRef
40.
Zurück zum Zitat Chan CM, Trigwell S, Duerig T (1990) Oxidation of an NiTi alloy. Surf Interface Anal 15(6):349–354CrossRef Chan CM, Trigwell S, Duerig T (1990) Oxidation of an NiTi alloy. Surf Interface Anal 15(6):349–354CrossRef
42.
Zurück zum Zitat Pelton A, Mehta A, Zhu L, Trépanier C, Imbeni V, Robertson S, Barney M, Minor A (2005) TiNi oxidation: kinetics and phase transformations. Solid-to-Solid Transform Inorg Mater 2:1029–1034 Pelton A, Mehta A, Zhu L, Trépanier C, Imbeni V, Robertson S, Barney M, Minor A (2005) TiNi oxidation: kinetics and phase transformations. Solid-to-Solid Transform Inorg Mater 2:1029–1034
43.
Zurück zum Zitat Kim K, Jee K, Kim W, Jang W, Han S (2008) Effect of heat treatment temperature on oxidation behavior in Ni–Ti alloy. Mater Sci Eng 481:658–661CrossRef Kim K, Jee K, Kim W, Jang W, Han S (2008) Effect of heat treatment temperature on oxidation behavior in Ni–Ti alloy. Mater Sci Eng 481:658–661CrossRef
44.
Zurück zum Zitat Undisz A, Schrempel F, Wesch W, Rettenmayr M (2009) In situ observation of surface oxide layers on medical grade Ni-Ti alloy during straining. J Biomed Mater Res 88(4):1000–1009CrossRef Undisz A, Schrempel F, Wesch W, Rettenmayr M (2009) In situ observation of surface oxide layers on medical grade Ni-Ti alloy during straining. J Biomed Mater Res 88(4):1000–1009CrossRef
45.
Zurück zum Zitat Dagdelen F, Ercan E (2014) The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures. J Therm Anal Calorim 115(1):561–565CrossRef Dagdelen F, Ercan E (2014) The surface oxidation behavior of Ni–45.16% Ti shape memory alloys at different temperatures. J Therm Anal Calorim 115(1):561–565CrossRef
46.
Zurück zum Zitat Shu X, Hu L, Li G, Lu S, Wang K, Peng P (2017) High-temperature oxidation resistance of the Ni60Ti alloy: an experimental and first-principles study. J Alloys Compd 706:297–304CrossRef Shu X, Hu L, Li G, Lu S, Wang K, Peng P (2017) High-temperature oxidation resistance of the Ni60Ti alloy: an experimental and first-principles study. J Alloys Compd 706:297–304CrossRef
47.
Zurück zum Zitat Kim KM, Yeom JT, Lee H-S, Yoon S-Y, Kim JH (2014) High temperature oxidation behavior of Ti–Ni–Hf shape memory alloy. Thermochim Acta 583:1–7CrossRef Kim KM, Yeom JT, Lee H-S, Yoon S-Y, Kim JH (2014) High temperature oxidation behavior of Ti–Ni–Hf shape memory alloy. Thermochim Acta 583:1–7CrossRef
48.
Zurück zum Zitat Hammersley A (1997) FIT2D: an introduction and overview, European Synchrotron Radiation Facility Internal Report ESRF97HA02T, 68, 58 Hammersley A (1997) FIT2D: an introduction and overview, European Synchrotron Radiation Facility Internal Report ESRF97HA02T, 68, 58
49.
Zurück zum Zitat Young M, Almer J, Daymond M, Haeffner D, Dunand D (2007) Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel. Acta Mater 55(6):1999–2011CrossRef Young M, Almer J, Daymond M, Haeffner D, Dunand D (2007) Load partitioning between ferrite and cementite during elasto-plastic deformation of an ultrahigh-carbon steel. Acta Mater 55(6):1999–2011CrossRef
51.
Zurück zum Zitat Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRef Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682CrossRef
52.
Zurück zum Zitat Kudoh Y, Tokonami M, Miyazaki S, Otsuka K (1985) Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metall 33(11):2049–2056CrossRef Kudoh Y, Tokonami M, Miyazaki S, Otsuka K (1985) Crystal structure of the martensite in Ti-49.2 at.% Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metall 33(11):2049–2056CrossRef
53.
Zurück zum Zitat Yurko G, Barton J, Parr J (1962) The crystal structure of Ti2Ni (a correction). Acta Crystallogr A 15(12):1309CrossRef Yurko G, Barton J, Parr J (1962) The crystal structure of Ti2Ni (a correction). Acta Crystallogr A 15(12):1309CrossRef
54.
Zurück zum Zitat Wang D, Guo Y, Liang K, Tao K (1999) Crystal structure of zirconia by Rietveld refinement. Sci China Ser A 42(1):80–86CrossRef Wang D, Guo Y, Liang K, Tao K (1999) Crystal structure of zirconia by Rietveld refinement. Sci China Ser A 42(1):80–86CrossRef
55.
Zurück zum Zitat Newnham R (1967) Crystal structure of ZrTiO4. J Am Ceram Soc 50(4):216CrossRef Newnham R (1967) Crystal structure of ZrTiO4. J Am Ceram Soc 50(4):216CrossRef
56.
Zurück zum Zitat Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quiros M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2011) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucl Acids Res 40(D1):D420–D427CrossRef Gražulis S, Daškevič A, Merkys A, Chateigner D, Lutterotti L, Quiros M, Serebryanaya NR, Moeck P, Downs RT, Le Bail A (2011) Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucl Acids Res 40(D1):D420–D427CrossRef
58.
Zurück zum Zitat Jr Chase M (1998) NIST–JANAF thermochemical tables, 4th edn, Part II, Cr–Zr. J Phys Chem Ref Data 9:1–1951 Jr Chase M (1998) NIST–JANAF thermochemical tables, 4th edn, Part II, Cr–Zr. J Phys Chem Ref Data 9:1–1951
59.
Zurück zum Zitat Boyle B, King E, Conway KC (1954) Heats of formation of nickel and cobalt oxides (NiO and CoO) of combustion calorimetry. J Am Chem Soc 76(14):3835–3837CrossRef Boyle B, King E, Conway KC (1954) Heats of formation of nickel and cobalt oxides (NiO and CoO) of combustion calorimetry. J Am Chem Soc 76(14):3835–3837CrossRef
60.
Zurück zum Zitat Xu C, Ma X, Shi S, Woo C (2004) Oxidation behavior of TiNi shape memory alloy at 450–750 C. Mater Sci Eng 371(1):45–50CrossRef Xu C, Ma X, Shi S, Woo C (2004) Oxidation behavior of TiNi shape memory alloy at 450–750 C. Mater Sci Eng 371(1):45–50CrossRef
61.
Zurück zum Zitat Frenzel J, George EP, Dlouhy A, Somsen C, Wagner M-X, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef Frenzel J, George EP, Dlouhy A, Somsen C, Wagner M-X, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef
Metadaten
Titel
In Situ Synchrotron Radiation X-ray Diffraction Study on Phase and Oxide Growth during a High Temperature Cycle of a NiTi-20 at.% Zr High Temperature Shape Memory Alloy
verfasst von
Matthew Carl
Brian Van Doren
Marcus L. Young
Publikationsdatum
22.02.2018
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2018
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-018-0149-0

Weitere Artikel der Ausgabe 1/2018

Shape Memory and Superelasticity 1/2018 Zur Ausgabe

SPECIAL ISSUE: A TRIBUTE TO PROF. SHUICHI MIYAZAKI – FROM FUNDAMENTALS TO APPLICATIONS, INVITED PAPER

Negative and Zero Thermal Expansion NiTi Superelastic Shape Memory Alloy by Microstructure Engineering

SPECIAL ISSUE: A TRIBUTE TO PROF. SHUICHI MIYAZAKI – FROM FUNDAMENTALS TO APPLICATIONS, INVITED PAPER

SMA Foils for MEMS: From Material Properties to the Engineering of Microdevices

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

Mechanical Stabilization of Martensite in Cu–Ni–Al Single Crystal and Unconventional Way to Detect It

Guest Editorial

SMST 2017

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

Effect of Thermomechanical Processing on Texture and Superelasticity in Fe–Ni-Co-Al–Ti-B Alloy

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.