Skip to main content
Erschienen in: Archive of Applied Mechanics 2/2020

12.10.2019 | Original

Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers

verfasst von: M. Ari, R. T. Faal

Erschienen in: Archive of Applied Mechanics | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, the optimization problem of the dynamic vibration absorbers (DVAs) for suppressing vibrations in thin plates within the wide frequency band is investigated. It is considered that the plate has simply supported edges and is subjected to a concentrated harmonic force. The vibration suppression is accomplished by the implementation of multiple mass–spring absorbers in order to minimize the plate deflection at the natural frequencies of the plate without absorbers. The governing equations of the plate equipped with DVAs for both isotropic and FG plates are derived and solved numerically and analytically. The formulation of the problem is capable of optimizing the \(L_{2}\) norm of the plate deflection at the wide frequency band with respect to mass, stiffness and position of each absorber attachment point. In this study, the possibility of simultaneous absorption of one or multiple natural frequencies of the plate without any absorbers is also studied. Some numerical results are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Mech. Des. 117, 234–242 (1995) Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Mech. Des. 117, 234–242 (1995)
2.
Zurück zum Zitat Ishida, Y.: Recent development of the passive vibration control method. Mech. Syst. Signal Process. 29, 2–18 (2012) Ishida, Y.: Recent development of the passive vibration control method. Mech. Syst. Signal Process. 29, 2–18 (2012)
3.
Zurück zum Zitat Kolovsky, M.Z.: Nonlinear Dynamics of Active and Passive Systems of Vibration Protection. Springer, Berlin (2013) Kolovsky, M.Z.: Nonlinear Dynamics of Active and Passive Systems of Vibration Protection. Springer, Berlin (2013)
4.
Zurück zum Zitat Mahadevaswamy, P., Suresh, B.S.: Optimal mass ratio of vibratory flap for vibration control of clamped rectangular plate. Ain Shams Eng. J. 7, 335–345 (2016) Mahadevaswamy, P., Suresh, B.S.: Optimal mass ratio of vibratory flap for vibration control of clamped rectangular plate. Ain Shams Eng. J. 7, 335–345 (2016)
5.
Zurück zum Zitat Megahed, S.M., El-Razik, A.K.A.: Vibration control of two degrees of freedom system using variable inertia vibration absorbers: modeling and simulation. J. Sound Vib. 329, 4841–4865 (2010) Megahed, S.M., El-Razik, A.K.A.: Vibration control of two degrees of freedom system using variable inertia vibration absorbers: modeling and simulation. J. Sound Vib. 329, 4841–4865 (2010)
6.
Zurück zum Zitat Tursun, M., Eşkinat, E.: H2 optimization of damped-vibration absorbers for suppressing vibrations in beams with constrained minimization. J. Vib. Acoust. 136, 21012 (2014) Tursun, M., Eşkinat, E.: H2 optimization of damped-vibration absorbers for suppressing vibrations in beams with constrained minimization. J. Vib. Acoust. 136, 21012 (2014)
7.
Zurück zum Zitat Frahm, H.: Device for damping vibrations of bodies. U.S. Patent No. 989,958. U.S. Patent and Trademark Office, Washington, DC (1911) Frahm, H.: Device for damping vibrations of bodies. U.S. Patent No. 989,958. U.S. Patent and Trademark Office, Washington, DC (1911)
8.
Zurück zum Zitat Ormondroyd, J.: The theory of the dynamic vibration absorber. Trans. ASME Appl. Mech. 50, 9–22 (1928) Ormondroyd, J.: The theory of the dynamic vibration absorber. Trans. ASME Appl. Mech. 50, 9–22 (1928)
9.
Zurück zum Zitat Hahnkamm, E.: The damping of the foundation vibrations at varying excitation frequency. Master Archit. 4, 192–201 (1932) Hahnkamm, E.: The damping of the foundation vibrations at varying excitation frequency. Master Archit. 4, 192–201 (1932)
10.
Zurück zum Zitat Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, North Chelmsford (1985)MATH Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, North Chelmsford (1985)MATH
11.
Zurück zum Zitat Vu, X.-T., Nguyen, D.-C., Khong, D.-D., Tong, V.-C.: Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degrees-of-freedom damped linear systems under torsional excitation using the fixed-point theory. Inst. Mech. Eng. Part K J. Multi-body Dyn. 232, 237–252 (2018) Vu, X.-T., Nguyen, D.-C., Khong, D.-D., Tong, V.-C.: Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degrees-of-freedom damped linear systems under torsional excitation using the fixed-point theory. Inst. Mech. Eng. Part K J. Multi-body Dyn. 232, 237–252 (2018)
12.
Zurück zum Zitat Hua, Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018) Hua, Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018)
14.
Zurück zum Zitat Kalehsar, H.E., Khodaie, N.: Optimization of response of a dynamic vibration absorber forming part of the main system by the fixed-point theory. KSCE J. Civ. Eng. 22, 2354–2361 (2018) Kalehsar, H.E., Khodaie, N.: Optimization of response of a dynamic vibration absorber forming part of the main system by the fixed-point theory. KSCE J. Civ. Eng. 22, 2354–2361 (2018)
15.
Zurück zum Zitat Noori, B., Farshidianfar, A.: Optimum design of dynamic vibration absorbers for a beam, based on H\(\infty \) and H2 optimization. Arch. Appl. Mech. 83, 1773–1787 (2013)MATH Noori, B., Farshidianfar, A.: Optimum design of dynamic vibration absorbers for a beam, based on H\(\infty \) and H2 optimization. Arch. Appl. Mech. 83, 1773–1787 (2013)MATH
16.
Zurück zum Zitat Nishihara, O.: Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust. 141, 11001 (2019) Nishihara, O.: Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust. 141, 11001 (2019)
17.
Zurück zum Zitat Cheung, Y.L., Wong, W.O.: H\(\infty \) and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates. J. Sound Vib. 320, 29–42 (2009) Cheung, Y.L., Wong, W.O.: H\(\infty \) and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates. J. Sound Vib. 320, 29–42 (2009)
18.
Zurück zum Zitat Moradi, H., Sadighi, M., Bakhtiari-Nejad, F.: Optimum design of a tuneable vibration absorber with variable position to suppress vibration of a cantilever plate. Int. J. Acoust. Vib. 16, 55 (2011) Moradi, H., Sadighi, M., Bakhtiari-Nejad, F.: Optimum design of a tuneable vibration absorber with variable position to suppress vibration of a cantilever plate. Int. J. Acoust. Vib. 16, 55 (2011)
19.
Zurück zum Zitat Jacquot, R.G.: Suppression of random vibration in plates using vibration absorbers. J. Sound Vib. 248, 585–596 (2001) Jacquot, R.G.: Suppression of random vibration in plates using vibration absorbers. J. Sound Vib. 248, 585–596 (2001)
20.
Zurück zum Zitat Faal, R.T., Amiri, M.B., Pirmohammadi, A.A., Milani, A.S.: Vibration analysis of undamped, suspended multi-beam absorber systems. Meccanica 47, 1059–1078 (2012)MathSciNetMATH Faal, R.T., Amiri, M.B., Pirmohammadi, A.A., Milani, A.S.: Vibration analysis of undamped, suspended multi-beam absorber systems. Meccanica 47, 1059–1078 (2012)MathSciNetMATH
21.
Zurück zum Zitat Yamaguchi, H.: Damping of transient vibration by a dynamic absorber. Trans. Jpn. Soc. Mech. Eng. 54, 561 (1988) Yamaguchi, H.: Damping of transient vibration by a dynamic absorber. Trans. Jpn. Soc. Mech. Eng. 54, 561 (1988)
22.
Zurück zum Zitat Nishihara, O., Matsuhisa, H.: Design of a dynamic vibration absorber for minimization of maximum amplitude magnification factor (derivation of algebraic exact solution). Trans. Jpn. Soc. Mech. Eng. Ser. C. 63, 3438–3445 (1997) Nishihara, O., Matsuhisa, H.: Design of a dynamic vibration absorber for minimization of maximum amplitude magnification factor (derivation of algebraic exact solution). Trans. Jpn. Soc. Mech. Eng. Ser. C. 63, 3438–3445 (1997)
23.
Zurück zum Zitat Esmailzadeh, E., Jalili, N.: Optimum design of vibration absorbers for structurally damped Timoshenko beams. J. Vib. Acoust. 120, 833–841 (1998) Esmailzadeh, E., Jalili, N.: Optimum design of vibration absorbers for structurally damped Timoshenko beams. J. Vib. Acoust. 120, 833–841 (1998)
24.
Zurück zum Zitat Brown, B., Singh, T.: Minimax design of vibration absorbers for linear damped systems. J. Sound Vib. 330, 2437–2448 (2011) Brown, B., Singh, T.: Minimax design of vibration absorbers for linear damped systems. J. Sound Vib. 330, 2437–2448 (2011)
25.
Zurück zum Zitat Fang, J., Wang, S.-M., Wang, Q.: Optimal design of vibration absorber using minimax criterion with simplified constraints. Acta Mech. Sin. 28, 848–853 (2012)MathSciNet Fang, J., Wang, S.-M., Wang, Q.: Optimal design of vibration absorber using minimax criterion with simplified constraints. Acta Mech. Sin. 28, 848–853 (2012)MathSciNet
26.
Zurück zum Zitat Fang, J., Wang, Q., Wang, S., Wang, Q.: Min-max criterion to the optimal design of vibration absorber in a system with Coulomb friction and viscous damping. Nonlinear Dyn. 70, 393–400 (2012)MathSciNet Fang, J., Wang, Q., Wang, S., Wang, Q.: Min-max criterion to the optimal design of vibration absorber in a system with Coulomb friction and viscous damping. Nonlinear Dyn. 70, 393–400 (2012)MathSciNet
27.
Zurück zum Zitat Anh, N.D., Nguyen, N.X.: Design of non-traditional dynamic vibration absorber for damped linear structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 45–55 (2014) Anh, N.D., Nguyen, N.X.: Design of non-traditional dynamic vibration absorber for damped linear structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 45–55 (2014)
28.
Zurück zum Zitat Zilletti, M., Elliott, S.J., Rustighi, E.: Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J. Sound Vib. 331, 4093–4100 (2012) Zilletti, M., Elliott, S.J., Rustighi, E.: Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J. Sound Vib. 331, 4093–4100 (2012)
29.
Zurück zum Zitat Yang, C., Li, D., Cheng, L.: Dynamic vibration absorbers for vibration control within a frequency band. J. Sound Vib. 330, 1582–1598 (2011) Yang, C., Li, D., Cheng, L.: Dynamic vibration absorbers for vibration control within a frequency band. J. Sound Vib. 330, 1582–1598 (2011)
30.
Zurück zum Zitat Wang, Y.Z., Wang, K.S.: The optimal design of a dynamic absorber for an arbitrary planar structure. Appl. Acoust. 23, 85–98 (1988) Wang, Y.Z., Wang, K.S.: The optimal design of a dynamic absorber for an arbitrary planar structure. Appl. Acoust. 23, 85–98 (1988)
31.
Zurück zum Zitat Viana, F.A.C., Kotinda, G.I., Rade, D.A., Steffen Jr., V.: Tuning dynamic vibration absorbers by using ant colony optimization. Comput. Struct. 86, 1539–1549 (2008) Viana, F.A.C., Kotinda, G.I., Rade, D.A., Steffen Jr., V.: Tuning dynamic vibration absorbers by using ant colony optimization. Comput. Struct. 86, 1539–1549 (2008)
32.
Zurück zum Zitat Wong, W.O., Tang, S.L., Cheung, Y.L., Cheng, L.: Design of a dynamic vibration absorber for vibration isolation of beams under point or distributed loading. J. Sound Vib. 301, 898–908 (2007) Wong, W.O., Tang, S.L., Cheung, Y.L., Cheng, L.: Design of a dynamic vibration absorber for vibration isolation of beams under point or distributed loading. J. Sound Vib. 301, 898–908 (2007)
33.
Zurück zum Zitat Issa, J.S.: Vibration absorbers for simply supported beams subjected to constant moving loads. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226, 398–404 (2012) Issa, J.S.: Vibration absorbers for simply supported beams subjected to constant moving loads. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226, 398–404 (2012)
34.
Zurück zum Zitat Febbo, M., Vera, S.A.: Optimization of a two degree of freedom system acting as a dynamic vibration absorber. J. Vib. Acoust. 130, 11013 (2008) Febbo, M., Vera, S.A.: Optimization of a two degree of freedom system acting as a dynamic vibration absorber. J. Vib. Acoust. 130, 11013 (2008)
35.
Zurück zum Zitat Moghaddas, M., Esmailzadeh, E., Sedaghati, R., Khosravi, P.: Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper. J. Vib. Control 18, 757–773 (2012)MathSciNetMATH Moghaddas, M., Esmailzadeh, E., Sedaghati, R., Khosravi, P.: Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper. J. Vib. Control 18, 757–773 (2012)MathSciNetMATH
36.
Zurück zum Zitat Kukla, S.: Frequency analysis of a rectangular plate with attached discrete systems. J. Sound Vib. 264, 225–234 (2003) Kukla, S.: Frequency analysis of a rectangular plate with attached discrete systems. J. Sound Vib. 264, 225–234 (2003)
37.
Zurück zum Zitat Kukla, S., Szewczyk, M.: Frequency analysis of annular plates with elastic concentric supports by Green’s function method. J. Sound Vib. 300, 387–393 (2007) Kukla, S., Szewczyk, M.: Frequency analysis of annular plates with elastic concentric supports by Green’s function method. J. Sound Vib. 300, 387–393 (2007)
38.
Zurück zum Zitat Zur, K.K.: Green’s function for frequency analysis of thin annular plates with nonlinear variable thickness. Appl. Math. Model. 40, 3601–3619 (2016)MathSciNetMATH Zur, K.K.: Green’s function for frequency analysis of thin annular plates with nonlinear variable thickness. Appl. Math. Model. 40, 3601–3619 (2016)MathSciNetMATH
39.
Zurück zum Zitat Żur, K.K.: Quasi-Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates. Compos. Struct. 183, 600–610 (2018) Żur, K.K.: Quasi-Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates. Compos. Struct. 183, 600–610 (2018)
40.
Zurück zum Zitat Żur, K.K.: Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green’s function method. Compos. Part B Eng. 144, 37–55 (2018) Żur, K.K.: Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green’s function method. Compos. Part B Eng. 144, 37–55 (2018)
41.
Zurück zum Zitat Żur, K.K.: Quasi-Green’s function approach to fundamental frequency analysis of elastically supported thin circular and annular plates with elastic constraints. J. Theor. Appl. Mech. 55, 87–101 (2017) Żur, K.K.: Quasi-Green’s function approach to fundamental frequency analysis of elastically supported thin circular and annular plates with elastic constraints. J. Theor. Appl. Mech. 55, 87–101 (2017)
42.
Zurück zum Zitat Hou, P.-F., Chen, J.-Y.: A refined analysis for the transversely isotropic plate under tangential loads by the 3D Green’s function. Eng. Anal. Bound. Elem. 93, 10–20 (2018)MathSciNetMATH Hou, P.-F., Chen, J.-Y.: A refined analysis for the transversely isotropic plate under tangential loads by the 3D Green’s function. Eng. Anal. Bound. Elem. 93, 10–20 (2018)MathSciNetMATH
43.
Zurück zum Zitat Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007) Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)
44.
Zurück zum Zitat Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: An exact solution for free vibration of thin functionally graded rectangular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 526–536 (2011)MATH Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: An exact solution for free vibration of thin functionally graded rectangular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 526–536 (2011)MATH
Metadaten
Titel
Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers
verfasst von
M. Ari
R. T. Faal
Publikationsdatum
12.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 2/2020
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01607-z

Weitere Artikel der Ausgabe 2/2020

Archive of Applied Mechanics 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.