Skip to main content
Erschienen in: Computational Mechanics 5/2016

01.05.2016 | Original Paper

Homogenization techniques for the analysis of porous SMA

verfasst von: V. Sepe, F. Auricchio, S. Marfia, E. Sacco

Erschienen in: Computational Mechanics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper the mechanical response of porous Shape Memory Alloy (SMA) is modeled. The porous SMA is considered as a composite medium made of a dense SMA matrix with voids treated as inclusions. The overall response of this very special composite is deduced performing a micromechanical and homogenization analysis. In particular, the incremental Mori–Tanaka averaging scheme is provided; then, the Transformation Field Analysis procedure in its uniform and nonuniform approaches, UTFA and NUTFA respectively, are presented. In particular, the extension of the NUTFA technique proposed by Sepe et al. (Int J Solids Struct 50:725–742, 2013) is presented to investigate the response of porous SMA characterized by closed and open porosity. A detailed comparison between the outcomes provided by the Mori–Tanaka, the UTFA and the proposed NUTFA procedures for porous SMA is presented, through numerical examples for two- and three-dimensional problems. In particular, several values of porosity and different loading conditions, inducing pseudoelastic effect in the SMA matrix, are investigated. The predictions assessed by the Mori–Tanaka, the UTFA and the NUTFA techniques are compared with the results obtained by nonlinear finite element analyses. A comparison with experimental data available in literature is also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wen CE, Xiong JY, Li YC, Hodgson PD (2010) Porous shape memory alloy scaffolds for biomedical applications: a review. Phys Scr T 139:1–8 Wen CE, Xiong JY, Li YC, Hodgson PD (2010) Porous shape memory alloy scaffolds for biomedical applications: a review. Phys Scr T 139:1–8
2.
Zurück zum Zitat Zhao Y, Taya M, Izui H (2006) Study on energy absorbing composite structure made of concentric NiTi spring and porous NiTi. Int J Solids Struct 43:2497–2512CrossRefMATH Zhao Y, Taya M, Izui H (2006) Study on energy absorbing composite structure made of concentric NiTi spring and porous NiTi. Int J Solids Struct 43:2497–2512CrossRefMATH
3.
Zurück zum Zitat Martynova I, Skorohod V, Solonin S, Goncharuk S (1996) Shape memory and superelasticity behaviour of porous Ti-Ni material. Journal de Physique IV C4:421–426 Martynova I, Skorohod V, Solonin S, Goncharuk S (1996) Shape memory and superelasticity behaviour of porous Ti-Ni material. Journal de Physique IV C4:421–426
4.
Zurück zum Zitat Li B-Y, Rong L-J, Li Y-Y (1998) Porous NiTi alloy prepared from elemental powder sintering. J Mater Res 13:2847–2851CrossRef Li B-Y, Rong L-J, Li Y-Y (1998) Porous NiTi alloy prepared from elemental powder sintering. J Mater Res 13:2847–2851CrossRef
5.
Zurück zum Zitat Ashrafi MJ, Arghavani J, Naghdabadi R, Sohrabpour S (2015) A 3D constitutive model for pressure-dependent phase transformation of porous shape memory alloys. J Mech Behav Biomed 42:292–310CrossRef Ashrafi MJ, Arghavani J, Naghdabadi R, Sohrabpour S (2015) A 3D constitutive model for pressure-dependent phase transformation of porous shape memory alloys. J Mech Behav Biomed 42:292–310CrossRef
6.
Zurück zum Zitat Nemat-Nasser S, Su Y, Guo WG, Isaacs J (2005) Experimental characterization and micro- mechanical modeling of superelastic response of a porous NiTi shape-memory alloy. J Mech Phys Solids 53(10):2320–2346CrossRef Nemat-Nasser S, Su Y, Guo WG, Isaacs J (2005) Experimental characterization and micro- mechanical modeling of superelastic response of a porous NiTi shape-memory alloy. J Mech Phys Solids 53(10):2320–2346CrossRef
7.
Zurück zum Zitat Qidwai MA, De Giorgi VG (2002) A computational mesoscale evaluation of material characteristics of porous shape memory alloys. Smart Mater Struct 11:435–443CrossRef Qidwai MA, De Giorgi VG (2002) A computational mesoscale evaluation of material characteristics of porous shape memory alloys. Smart Mater Struct 11:435–443CrossRef
8.
Zurück zum Zitat Qidwai MA, De Giorgi VG (2004) Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite. Smart Mater Struct 13:134–145CrossRef Qidwai MA, De Giorgi VG (2004) Numerical assessment of the dynamic behavior of hybrid shape memory alloy composite. Smart Mater Struct 13:134–145CrossRef
9.
Zurück zum Zitat Panico M, Brinson LC (2008) Computational modeling of porous shape memory alloys. Int J Solids Struct 45:5613–5626CrossRefMATH Panico M, Brinson LC (2008) Computational modeling of porous shape memory alloys. Int J Solids Struct 45:5613–5626CrossRefMATH
10.
Zurück zum Zitat Liu B, Dui G, Zhu Y (2012) On phase transformation behavior of porous Shape Memory Alloys. J Mech Behav Biomed Mater 5:9–15CrossRef Liu B, Dui G, Zhu Y (2012) On phase transformation behavior of porous Shape Memory Alloys. J Mech Behav Biomed Mater 5:9–15CrossRef
11.
Zurück zum Zitat Sepe V, Marfia S, Auricchio F (2014) Response of porous SMA: a micromechanical study. Frattura ed Integrità Strutturale 29:85–96 Sepe V, Marfia S, Auricchio F (2014) Response of porous SMA: a micromechanical study. Frattura ed Integrità Strutturale 29:85–96
12.
Zurück zum Zitat Sepe V, Auricchio F, Marfia S, Sacco E (2015) Micromechanical analysis of porous SMA. Smart Mater Struct 24:20CrossRef Sepe V, Auricchio F, Marfia S, Sacco E (2015) Micromechanical analysis of porous SMA. Smart Mater Struct 24:20CrossRef
13.
Zurück zum Zitat Fritzen F, Forest S, Kondo D, Böhlke T (2013) Computational homogenization of porous materials of Green type. Comput Mech 52:121–134MathSciNetCrossRefMATH Fritzen F, Forest S, Kondo D, Böhlke T (2013) Computational homogenization of porous materials of Green type. Comput Mech 52:121–134MathSciNetCrossRefMATH
14.
Zurück zum Zitat Qidwai MA, Entchev PB, Lagoudas DC, De Giorgi VG (2001) Modeling of the thermomechanical behavior of porous shape memory alloys. Int J Solids Struct 38:8653–8671CrossRefMATH Qidwai MA, Entchev PB, Lagoudas DC, De Giorgi VG (2001) Modeling of the thermomechanical behavior of porous shape memory alloys. Int J Solids Struct 38:8653–8671CrossRefMATH
15.
Zurück zum Zitat Entchev PB, Lagoudas DC (2002) Modeling porous shape memory alloys using micromechanical averaging techniques. Mech Mater 34(1):1–24CrossRef Entchev PB, Lagoudas DC (2002) Modeling porous shape memory alloys using micromechanical averaging techniques. Mech Mater 34(1):1–24CrossRef
16.
Zurück zum Zitat Entchev PB, Lagoudas DC (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part II: porous SMA response. Mech Mater 36(9):893–913CrossRef Entchev PB, Lagoudas DC (2004) Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part II: porous SMA response. Mech Mater 36(9):893–913CrossRef
17.
Zurück zum Zitat Zhao Y, Taya M (2007) Analytical modeling for stress–strain curve of a porous NiTi. J Appl Mech 74(2):291–297CrossRefMATH Zhao Y, Taya M (2007) Analytical modeling for stress–strain curve of a porous NiTi. J Appl Mech 74(2):291–297CrossRefMATH
18.
Zurück zum Zitat Zhu Y, Dui G (2011) A model considering hydrostatic stress of porous NiTi shape memory alloys. Acta Mech Solida Sin 24(4):289–298CrossRef Zhu Y, Dui G (2011) A model considering hydrostatic stress of porous NiTi shape memory alloys. Acta Mech Solida Sin 24(4):289–298CrossRef
20.
Zurück zum Zitat Marfia S, Sacco E (2007) Analysis of SMA composite laminates using a multiscale modeling technique. Int J Numer Methods Eng 70:1182–1208MathSciNetCrossRefMATH Marfia S, Sacco E (2007) Analysis of SMA composite laminates using a multiscale modeling technique. Int J Numer Methods Eng 70:1182–1208MathSciNetCrossRefMATH
21.
Zurück zum Zitat Dvorak GJ, Bahei-El-Din A (1997) Inelastic composite materials: transformation field analysis and experiments. In: Suquet P (ed) Continuum micromechanics. CISM course and lecture 377. Springer, Berlin, pp 1–59 Dvorak GJ, Bahei-El-Din A (1997) Inelastic composite materials: transformation field analysis and experiments. In: Suquet P (ed) Continuum micromechanics. CISM course and lecture 377. Springer, Berlin, pp 1–59
22.
Zurück zum Zitat Chaboche J, Kruch LS, Maire J, Pottier T (2001) Towards a micromechanics based inelastic and damage modeling of composites. Int J Plast 17:411–439CrossRefMATH Chaboche J, Kruch LS, Maire J, Pottier T (2001) Towards a micromechanics based inelastic and damage modeling of composites. Int J Plast 17:411–439CrossRefMATH
24.
Zurück zum Zitat Michel J, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502MathSciNetCrossRefMATH Michel J, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193:5477–5502MathSciNetCrossRefMATH
25.
Zurück zum Zitat Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Meth Eng 84:803–829MathSciNetCrossRefMATH Fritzen F, Böhlke T (2010) Three-dimensional finite element implementation of the nonuniform transformation field analysis. Int J Numer Meth Eng 84:803–829MathSciNetCrossRefMATH
26.
Zurück zum Zitat Marfia S, Sacco E (2012) Multiscale damage contact-friction model for periodic masonry walls. Comput Methods Appl Mech Eng 205–208:189–203MathSciNetCrossRefMATH Marfia S, Sacco E (2012) Multiscale damage contact-friction model for periodic masonry walls. Comput Methods Appl Mech Eng 205–208:189–203MathSciNetCrossRefMATH
27.
Zurück zum Zitat Sepe V, Marfia S, Sacco E (2013) A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field. Int J Solids Struct 50(5):725–742CrossRef Sepe V, Marfia S, Sacco E (2013) A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field. Int J Solids Struct 50(5):725–742CrossRef
28.
Zurück zum Zitat Fritzen F, Marfia S, Sepe V (2015) Reduced order modeling in nonlinear homogenization: a comparative study. Comput Struct 157:114–131CrossRef Fritzen F, Marfia S, Sepe V (2015) Reduced order modeling in nonlinear homogenization: a comparative study. Comput Struct 157:114–131CrossRef
29.
Zurück zum Zitat Souza AC, Mamiya EN, Zouain N (1998) Three-dimensional model for solids undergoing stress-induced phase transformations. Eur J Mech A Solids 17:789–806CrossRefMATH Souza AC, Mamiya EN, Zouain N (1998) Three-dimensional model for solids undergoing stress-induced phase transformations. Eur J Mech A Solids 17:789–806CrossRefMATH
30.
Zurück zum Zitat Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61:807–836MathSciNetCrossRefMATH Auricchio F, Petrini L (2004) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Methods Eng 61:807–836MathSciNetCrossRefMATH
31.
Zurück zum Zitat Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape memory alloy materials. Comput Mech 44:405–421MathSciNetCrossRefMATH Evangelista V, Marfia S, Sacco E (2009) Phenomenological 3D and 1D consistent models for shape memory alloy materials. Comput Mech 44:405–421MathSciNetCrossRefMATH
32.
Zurück zum Zitat Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574CrossRef Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574CrossRef
33.
Zurück zum Zitat Benveniste Y (1987) A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6:147–157CrossRef Benveniste Y (1987) A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6:147–157CrossRef
34.
Zurück zum Zitat Mura T (1987) Micromechanics of defects in solids. Kluwer Academic Publisher, DordrechtCrossRefMATH Mura T (1987) Micromechanics of defects in solids. Kluwer Academic Publisher, DordrechtCrossRefMATH
35.
Zurück zum Zitat Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, LondonMATH Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, LondonMATH
36.
Zurück zum Zitat Zienkiewicz OC, Taylor RL (1991) The finite element method, 4th edn. McGraw-Hill, LondonMATH Zienkiewicz OC, Taylor RL (1991) The finite element method, 4th edn. McGraw-Hill, LondonMATH
37.
Zurück zum Zitat Zhao Y, Taya M, Kang YS, Kawasaki A (2005) Compression behavior of porous NiTi shape memory alloy. Acta Mater 53(2):337–343CrossRef Zhao Y, Taya M, Kang YS, Kawasaki A (2005) Compression behavior of porous NiTi shape memory alloy. Acta Mater 53(2):337–343CrossRef
38.
Zurück zum Zitat Weng GJ (1990) The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. lnt J Eng Sci 28(11):1111–1120CrossRefMATH Weng GJ (1990) The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. lnt J Eng Sci 28(11):1111–1120CrossRefMATH
Metadaten
Titel
Homogenization techniques for the analysis of porous SMA
verfasst von
V. Sepe
F. Auricchio
S. Marfia
E. Sacco
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 5/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1259-1

Weitere Artikel der Ausgabe 5/2016

Computational Mechanics 5/2016 Zur Ausgabe

Neuer Inhalt