Skip to main content
Erschienen in: Computational Mechanics 2/2021

19.06.2021 | Original Paper

A numerical formulation for cavitating flows around marine propellers based on variational multiscale method

verfasst von: A. Bayram, A. Korobenko

Erschienen in: Computational Mechanics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical approach for modelling cavitating flows over moving hydrodynamic surfaces is presented. The operating fluid is modelled as an isothermal homogeneous mixture of water vapor and liquid phases. The flow field is governed by the Navier–Stokes equations along with a transport equation for the vapor volume fraction. The Arbitrary Lagrangian-Eulerian description of the continuum is adopted to handle fluid flow simulations on moving domains. The residual based variational multiscale method is used to model the turbulent flow together with wall modelling implemented by the weak imposition of the no-slip boundary condition. Merkle and Zwart cavitation models are implemented and compared. First, a cavitating flow over a 3D hemispherical fore-body is modeled to perform a detailed comparison between two models. Next, the cavitating flow over the INSEAN E779A marine propeller is modeled and results are compared to available experimental data showing good agreement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Burrill LC (1951) Sir Charles Parsons and cavitation. The Institute of Marine Engineers, Transactions, vol LXIII, no 8 Burrill LC (1951) Sir Charles Parsons and cavitation. The Institute of Marine Engineers, Transactions, vol LXIII, no 8
2.
Zurück zum Zitat Kuiper G (1997) Cavitation research and ship propeller design. Appl Sci Res 58(1–4):33–50CrossRef Kuiper G (1997) Cavitation research and ship propeller design. Appl Sci Res 58(1–4):33–50CrossRef
3.
Zurück zum Zitat Krella AK, Zakrzewska DE (2018) Cavitation erosion-phenomenon and test rigs. Adv Mater Sci 18(2):15–26CrossRef Krella AK, Zakrzewska DE (2018) Cavitation erosion-phenomenon and test rigs. Adv Mater Sci 18(2):15–26CrossRef
4.
Zurück zum Zitat Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 123(792):440–465MATH Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Lond Ser A Contain Pap Math Phys Charact 123(792):440–465MATH
5.
Zurück zum Zitat Schoenherr KE (1939) Propulsion and propellers. Princ Naval Archit 2:148–150 Schoenherr KE (1939) Propulsion and propellers. Princ Naval Archit 2:148–150
6.
Zurück zum Zitat Lerbs HW (1952) Moderately loaded propellers with a finite number of blades and a arbitrary distribution of circulations. Trans SNAME 60:73–123 Lerbs HW (1952) Moderately loaded propellers with a finite number of blades and a arbitrary distribution of circulations. Trans SNAME 60:73–123
7.
Zurück zum Zitat Eckhardt MK, Morgan WB (1955) A propeller design method. SNAME Trans 63:1955 Eckhardt MK, Morgan WB (1955) A propeller design method. SNAME Trans 63:1955
8.
Zurück zum Zitat van Manen JD (1957) Fundamentals of ship resistance and propulsion. Int Shipbuild Progr 4(35):371–391CrossRef van Manen JD (1957) Fundamentals of ship resistance and propulsion. Int Shipbuild Progr 4(35):371–391CrossRef
9.
Zurück zum Zitat Lerbs HW (1955) Propeller pitch correction arising from lifting surface effect. Technical report, David Taylor Model Basin Washington DC Lerbs HW (1955) Propeller pitch correction arising from lifting surface effect. Technical report, David Taylor Model Basin Washington DC
10.
Zurück zum Zitat Nelson DM (1964) A lifting-surface propeller design method for high-speed computers. Technical report, Naval Ordnance Test Station China Lake CA Nelson DM (1964) A lifting-surface propeller design method for high-speed computers. Technical report, Naval Ordnance Test Station China Lake CA
11.
Zurück zum Zitat Morgan WB, Silovic V, Denny SB (1968) Propeller lifting-surface corrections. Technical report, Hydro and Aerodynamics Lab Lyngby (Denmark) Hydrodynamics Section Morgan WB, Silovic V, Denny SB (1968) Propeller lifting-surface corrections. Technical report, Hydro and Aerodynamics Lab Lyngby (Denmark) Hydrodynamics Section
12.
Zurück zum Zitat Kuiper G (1981) Cavitation inception on ship propeller models. Ph.D. Thesis, Technische Hogeschool Delft Kuiper G (1981) Cavitation inception on ship propeller models. Ph.D. Thesis, Technische Hogeschool Delft
13.
Zurück zum Zitat Tulin MP (1953) Steady two-dimensional cavity flows about slender bodies. David W. Taylor Model Basin, Washington DC, USA, Department of the Navy, Research and Development Report 834 Tulin MP (1953) Steady two-dimensional cavity flows about slender bodies. David W. Taylor Model Basin, Washington DC, USA, Department of the Navy, Research and Development Report 834
14.
Zurück zum Zitat Geurst JA, Verbrugh PJ (1959) A note on camber effects of a partially cavitated hydrofoil. Int Shipbuild Progr 6(61):409–414CrossRef Geurst JA, Verbrugh PJ (1959) A note on camber effects of a partially cavitated hydrofoil. Int Shipbuild Progr 6(61):409–414CrossRef
15.
Zurück zum Zitat Geurst JA (1961) Linearized theory of two-dimensional cavity flows. Technical report, Technische Hogeschool Delft Geurst JA (1961) Linearized theory of two-dimensional cavity flows. Technical report, Technische Hogeschool Delft
16.
Zurück zum Zitat Fabula AG (1962) Thin-airfoil theory applied to hydrofoils with a single finite cavity and arbitrary free-streamline detachment. J Fluid Mech 12(2):227–240MathSciNetMATHCrossRef Fabula AG (1962) Thin-airfoil theory applied to hydrofoils with a single finite cavity and arbitrary free-streamline detachment. J Fluid Mech 12(2):227–240MathSciNetMATHCrossRef
17.
Zurück zum Zitat Tulin MP (1963) Supercavitating flows-small perturbation theory. Technical report, Hydronautics Inc Laurel MD Tulin MP (1963) Supercavitating flows-small perturbation theory. Technical report, Hydronautics Inc Laurel MD
18.
Zurück zum Zitat Wade RB (1967) Linearized theory of a partially cavitating plano-convex hydrofoil including the effects of camber and thickness. J Ship Res 11(1):20–27CrossRef Wade RB (1967) Linearized theory of a partially cavitating plano-convex hydrofoil including the effects of camber and thickness. J Ship Res 11(1):20–27CrossRef
19.
Zurück zum Zitat Kinnas SA (1985) Non-linear corrections to the linear theory for the prediction of the cavitating flow around hydrofoils. Ph.D Thesis, Massachusetts Institute of Technology Kinnas SA (1985) Non-linear corrections to the linear theory for the prediction of the cavitating flow around hydrofoils. Ph.D Thesis, Massachusetts Institute of Technology
20.
Zurück zum Zitat Kinnas SA et al (1991) Leading-edge corrections to the linear theory of partially cavitating hydrofoils. J Ship Res 35(01):15–27CrossRef Kinnas SA et al (1991) Leading-edge corrections to the linear theory of partially cavitating hydrofoils. J Ship Res 35(01):15–27CrossRef
21.
Zurück zum Zitat Tulin MP, Chun CH (1980) New application of cavity flow theory. In: 13th Symposium on naval hydrodynamics, Tokyo, pp 107–132 Tulin MP, Chun CH (1980) New application of cavity flow theory. In: 13th Symposium on naval hydrodynamics, Tokyo, pp 107–132
22.
Zurück zum Zitat Widnall SE et al (1966) Unsteady loads on supercavitating hydrofoils of finite span. J Ship Res 10(02):107–118CrossRef Widnall SE et al (1966) Unsteady loads on supercavitating hydrofoils of finite span. J Ship Res 10(02):107–118CrossRef
23.
Zurück zum Zitat Lee C-S (1979) Predicton of steady and unsteady performance of marine propellers with or without cavitation by numerical lifting-surface theory. Ph.D. Thesis, Massachusetts Institute of Technology Lee C-S (1979) Predicton of steady and unsteady performance of marine propellers with or without cavitation by numerical lifting-surface theory. Ph.D. Thesis, Massachusetts Institute of Technology
24.
Zurück zum Zitat Lee C-S (1980) Prediction of the transient cavitation on marine propellers by numerical lifting-surface theory. In: Proceedings of 13th symposium on naval hydrodynamics, pp 41–64 Lee C-S (1980) Prediction of the transient cavitation on marine propellers by numerical lifting-surface theory. In: Proceedings of 13th symposium on naval hydrodynamics, pp 41–64
25.
Zurück zum Zitat Breslin JP, Kerwin JE (1983) Theoretical and experimental propeller-induced hull pressures arising from intermittent blade cavitation loading and thickness. Technical report, Maritime Technical Information Facility Breslin JP, Kerwin JE (1983) Theoretical and experimental propeller-induced hull pressures arising from intermittent blade cavitation loading and thickness. Technical report, Maritime Technical Information Facility
26.
Zurück zum Zitat Kerwin JE (1986) Marine propellers. Annu Rev Fluid Mech 18(1):367–403CrossRef Kerwin JE (1986) Marine propellers. Annu Rev Fluid Mech 18(1):367–403CrossRef
27.
Zurück zum Zitat Kerwin JE (1961) The solution of propeller lifting surface problems by vortex lattice methods. Technical report, Massachusetts Institute of Technology Cambridge Dept of Naval Architecture and Marine Engineering Kerwin JE (1961) The solution of propeller lifting surface problems by vortex lattice methods. Technical report, Massachusetts Institute of Technology Cambridge Dept of Naval Architecture and Marine Engineering
28.
Zurück zum Zitat Kerwin JE, Lee C-S (1978) Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Technical report, Society of Naval Architects and Marine Engineers Kerwin JE, Lee C-S (1978) Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory. Technical report, Society of Naval Architects and Marine Engineers
29.
Zurück zum Zitat Szantyr JA (1985) A new method for the analysis of unsteady propeller cavitation and hull surface pressures. R Inst Naval Arch Trans 127 Szantyr JA (1985) A new method for the analysis of unsteady propeller cavitation and hull surface pressures. R Inst Naval Arch Trans 127
30.
Zurück zum Zitat Kinnas SA, Fine NE (1989) Theoretical prediction of midchord and face unsteady propeller sheet cavitation. In: International conference on numerical ship hydrodynamics, 5th, pp 685–700 Kinnas SA, Fine NE (1989) Theoretical prediction of midchord and face unsteady propeller sheet cavitation. In: International conference on numerical ship hydrodynamics, 5th, pp 685–700
31.
Zurück zum Zitat Kinnas SA et al (1992) A general theory for the coupling between thickness and loading for wings and propellers. J Ship Res 36(01):59–68CrossRef Kinnas SA et al (1992) A general theory for the coupling between thickness and loading for wings and propellers. J Ship Res 36(01):59–68CrossRef
32.
Zurück zum Zitat Kinnas SA, Lee H, Young YL (2003) Modeling of unsteady sheet cavitation on marine propeller blades. Int J Rotat Mach 9(4):263–277CrossRef Kinnas SA, Lee H, Young YL (2003) Modeling of unsteady sheet cavitation on marine propeller blades. Int J Rotat Mach 9(4):263–277CrossRef
33.
Zurück zum Zitat Hess JL, Valarezo WO (1985) Calculation of steady flow about propellers using a surface panel method. J Propul Power 1(6):470–476CrossRef Hess JL, Valarezo WO (1985) Calculation of steady flow about propellers using a surface panel method. J Propul Power 1(6):470–476CrossRef
34.
Zurück zum Zitat Lee J (1987) A potential based panel method for the analysis of marine propellers in steady flow. Ph.D. Thesis, Massachusetts Institute of Technology Lee J (1987) A potential based panel method for the analysis of marine propellers in steady flow. Ph.D. Thesis, Massachusetts Institute of Technology
35.
Zurück zum Zitat Fine NE (1992) Nonlinear analysis of cavitating propellers in nonuniform flow. Ph.D. Thesis, Massachusetts institute of Technology Fine NE (1992) Nonlinear analysis of cavitating propellers in nonuniform flow. Ph.D. Thesis, Massachusetts institute of Technology
36.
Zurück zum Zitat Kinnas SA, Fine NE (1992) A nonlinear boundary element method for the analysis of unsteady propeller sheet cavitation. In: Proceedings of the 19th symposium on naval hydrodynamics, pp 717–737 Kinnas SA, Fine NE (1992) A nonlinear boundary element method for the analysis of unsteady propeller sheet cavitation. In: Proceedings of the 19th symposium on naval hydrodynamics, pp 717–737
37.
Zurück zum Zitat Lee H, Kinnas SA, Gu H, Natarajan S (2003). Numerical modeling of rudder sheet cavitation including propeller/rudder interaction and the effects of a tunnel. In: Fifth international symposium on cavitation (CAV 2003) proceedings, pp CAV03–GS–12–005 Lee H, Kinnas SA, Gu H, Natarajan S (2003). Numerical modeling of rudder sheet cavitation including propeller/rudder interaction and the effects of a tunnel. In: Fifth international symposium on cavitation (CAV 2003) proceedings, pp CAV03–GS–12–005
38.
Zurück zum Zitat Young YL, Kinnas SA (2001) A BEM for the prediction of unsteady midchord face and/or back propeller cavitation. J Fluids Eng 123(2):311–319CrossRef Young YL, Kinnas SA (2001) A BEM for the prediction of unsteady midchord face and/or back propeller cavitation. J Fluids Eng 123(2):311–319CrossRef
39.
Zurück zum Zitat Lee H, Kinnas SA (2004) Application of a boundary element method in the prediction of unsteady blade sheet and developed tip vortex cavitation on marine propellers. J Ship Res 48(1):15–30CrossRef Lee H, Kinnas SA (2004) Application of a boundary element method in the prediction of unsteady blade sheet and developed tip vortex cavitation on marine propellers. J Ship Res 48(1):15–30CrossRef
40.
Zurück zum Zitat Lee H, Kinnas SA (2005) Unsteady wake alignment for propellers in nonaxisymmetric flows. J Ship Res 49(3):176–190CrossRef Lee H, Kinnas SA (2005) Unsteady wake alignment for propellers in nonaxisymmetric flows. J Ship Res 49(3):176–190CrossRef
41.
Zurück zum Zitat Salvatore F, Greco L, Calcagni D (2011). Computational analysis of marine propeller performance and cavitation by using an inviscid-flow BEM model. In: Second international symposium on marine propulsors (SMP2011), Hamburg, Germany, pp 72–79 Salvatore F, Greco L, Calcagni D (2011). Computational analysis of marine propeller performance and cavitation by using an inviscid-flow BEM model. In: Second international symposium on marine propulsors (SMP2011), Hamburg, Germany, pp 72–79
42.
Zurück zum Zitat Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Herrer J, Whitworth S, Macé R, Korsström A (2015) Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation. In: Proceedings of the 4th international symposium on marine propulsors (SMP15), Austin, TX, USA, pp 330–345 Vaz G, Hally D, Huuva T, Bulten N, Muller P, Becchi P, Herrer J, Whitworth S, Macé R, Korsström A (2015) Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation. In: Proceedings of the 4th international symposium on marine propulsors (SMP15), Austin, TX, USA, pp 330–345
43.
Zurück zum Zitat Perali P, Lloyd T, Vaz G (2016). Comparison of uRANS and BEM-BEM for propeller pressure pulse prediction: E779A propeller in a cavitation tunnel. In: Proceedings of the 19th numerical towing tank symposium, pp 90–95 Perali P, Lloyd T, Vaz G (2016). Comparison of uRANS and BEM-BEM for propeller pressure pulse prediction: E779A propeller in a cavitation tunnel. In: Proceedings of the 19th numerical towing tank symposium, pp 90–95
44.
Zurück zum Zitat Vaz G, de Campos J, Bosschers J, de Eça L (2005)Instituto Superior de Ciências do Trabalho e da Empresa. Modelling of sheet cavitation on hydrofoils and marine propellers using boundary element methods Vaz G, de Campos J, Bosschers J, de Eça L (2005)Instituto Superior de Ciências do Trabalho e da Empresa. Modelling of sheet cavitation on hydrofoils and marine propellers using boundary element methods
45.
Zurück zum Zitat Carlton J (2018) Marine propellers and propulsion. Butterworth-Heinemann Carlton J (2018) Marine propellers and propulsion. Butterworth-Heinemann
46.
Zurück zum Zitat Kubota A, Kato H, Yamaguchi H (1992) A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J Fluid Mech 240:59–96CrossRef Kubota A, Kato H, Yamaguchi H (1992) A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J Fluid Mech 240:59–96CrossRef
47.
Zurück zum Zitat Merkle CL (1998) Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd international symposium on cavitation, Grenoble, France, 1998, pp 307–313 Merkle CL (1998) Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd international symposium on cavitation, Grenoble, France, 1998, pp 307–313
48.
Zurück zum Zitat Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Lindau JW, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29(8):849–875MATHCrossRef Kunz RF, Boger DA, Stinebring DR, Chyczewski TS, Lindau JW, Gibeling HJ, Venkateswaran S, Govindan TR (2000) A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction. Comput Fluids 29(8):849–875MATHCrossRef
49.
Zurück zum Zitat Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth international conference on multiphase flow, vol 1. ICMF New Orleans Schnerr GH, Sauer J (2001) Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth international conference on multiphase flow, vol 1. ICMF New Orleans
50.
Zurück zum Zitat Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124(3):617–624CrossRef Singhal AK, Athavale MM, Li H, Jiang Y (2002) Mathematical basis and validation of the full cavitation model. J Fluids Eng 124(3):617–624CrossRef
51.
Zurück zum Zitat Zwart PJ, Gerber AG, Belamri T , et al (2004) A two-phase flow model for predicting cavitation dynamics. In: Fifth international conference on multiphase flow, Yokohama, Japan, vol 152 Zwart PJ, Gerber AG, Belamri T , et al (2004) A two-phase flow model for predicting cavitation dynamics. In: Fifth international conference on multiphase flow, Yokohama, Japan, vol 152
52.
Zurück zum Zitat Abdel-Maksoud M, SVA P M B (2003). Numerical and experimental study of cavitation behaviour of a propeller. Jahrbuch der Schiffbautechnischen Gesellschaft, pp 35–43 Abdel-Maksoud M, SVA P M B (2003). Numerical and experimental study of cavitation behaviour of a propeller. Jahrbuch der Schiffbautechnischen Gesellschaft, pp 35–43
54.
Zurück zum Zitat Salvatore F, Streckwall H, Van Terwisga T (2009) Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In: Proceedings of the first international symposium on marine propulsors, Trondheim, Norway, pp 22–24. Citeseer Salvatore F, Streckwall H, Van Terwisga T (2009) Propeller cavitation modelling by CFD-results from the VIRTUE 2008 Rome workshop. In: Proceedings of the first international symposium on marine propulsors, Trondheim, Norway, pp 22–24. Citeseer
55.
Zurück zum Zitat Salvatore F, Pereira F, Felli M, Calcagni D, Di Felice F (2006) Description of the INSEAN E779A propeller experimental dataset. Technical report, INSEAN Tech. rep. 2006-085 Salvatore F, Pereira F, Felli M, Calcagni D, Di Felice F (2006) Description of the INSEAN E779A propeller experimental dataset. Technical report, INSEAN Tech. rep. 2006-085
56.
Zurück zum Zitat Heinke HJ, Lubke L (2011) The SMP 2011 workshop on cavitation and propeller performance-case 2, propeller open water performance and cavitation behaviour. In: Proceedings of first workshop on cavitation and propeller performance, the second international symposium on marine propulsors, SMP, pp 36–42 Heinke HJ, Lubke L (2011) The SMP 2011 workshop on cavitation and propeller performance-case 2, propeller open water performance and cavitation behaviour. In: Proceedings of first workshop on cavitation and propeller performance, the second international symposium on marine propulsors, SMP, pp 36–42
57.
Zurück zum Zitat Gaggero S, Villa D (2017) Steady cavitating propeller performance by using OpenFOAM, StarCCM+ and a boundary element method. Proc Inst Mech Eng Part M J Eng Maritime Environ 231(2):411–440 Gaggero S, Villa D (2017) Steady cavitating propeller performance by using OpenFOAM, StarCCM+ and a boundary element method. Proc Inst Mech Eng Part M J Eng Maritime Environ 231(2):411–440
58.
Zurück zum Zitat Reboud J-L, Stutz B, Coutier O (1998) Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: 3rd international symposium on cavitation CAV1998, Grenoble, France, vol 26, pp 203–208 Reboud J-L, Stutz B, Coutier O (1998) Two phase flow structure of cavitation: experiment and modeling of unsteady effects. In: 3rd international symposium on cavitation CAV1998, Grenoble, France, vol 26, pp 203–208
59.
Zurück zum Zitat Coutier-Delgosha O, Fortes-Patella R, Reboud J-L (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng 125(1):38–45CrossRef Coutier-Delgosha O, Fortes-Patella R, Reboud J-L (2003) Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation. J Fluids Eng 125(1):38–45CrossRef
60.
Zurück zum Zitat Bensow RE, Bark G (2010) Implicit LES predictions of the cavitating flow on a propeller. J Fluids Eng 132(4) Bensow RE, Bark G (2010) Implicit LES predictions of the cavitating flow on a propeller. J Fluids Eng 132(4)
61.
Zurück zum Zitat Lu N-X, Bensow RE, Bark G (2014) Large eddy simulation of cavitation development on highly skewed propellers. J Mar Sci Technol 19(2):197–214CrossRef Lu N-X, Bensow RE, Bark G (2014) Large eddy simulation of cavitation development on highly skewed propellers. J Mar Sci Technol 19(2):197–214CrossRef
62.
Zurück zum Zitat Kurobe Y (1983) Measurement of cavity volume and pressure fluctuations on a model of the training ship “Seiun-Maru” with reference to full scale measurement. Rep Ship Res Inst 20(6) Kurobe Y (1983) Measurement of cavity volume and pressure fluctuations on a model of the training ship “Seiun-Maru” with reference to full scale measurement. Rep Ship Res Inst 20(6)
63.
Zurück zum Zitat Yu C, Wang Y, Huang C, Wu X, Du T (2017) Large eddy simulation of unsteady cavitating flow around a highly skewed propeller in nonuniform wake. J Fluids Eng 139(4) Yu C, Wang Y, Huang C, Wu X, Du T (2017) Large eddy simulation of unsteady cavitating flow around a highly skewed propeller in nonuniform wake. J Fluids Eng 139(4)
64.
Zurück zum Zitat Asnaghi A, Svennberg U, Bensow RE (2018) Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers. Appl Ocean Res 79:197–214CrossRef Asnaghi A, Svennberg U, Bensow RE (2018) Numerical and experimental analysis of cavitation inception behaviour for high-skewed low-noise propellers. Appl Ocean Res 79:197–214CrossRef
65.
Zurück zum Zitat Yilmaz N, Atlar M, Khorasanchi M (2019) An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Eng 171:139–150CrossRef Yilmaz N, Atlar M, Khorasanchi M (2019) An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers. Ocean Eng 171:139–150CrossRef
66.
Zurück zum Zitat Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59MATHCrossRef Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59MATHCrossRef
67.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007a) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007a) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201MathSciNetMATHCrossRef
68.
Zurück zum Zitat Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. Ph.D. Thesis, Stanford University Stanford, CA Calo VM (2004) Residual-based multiscale turbulence modeling: finite volume simulations of bypass transition. Ph.D. Thesis, Stanford University Stanford, CA
69.
Zurück zum Zitat Motlagh YG, Ahn HT, Hughes TJR, Calo VM (2013) Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method. Comput Fluids 71:146–155MathSciNetMATHCrossRef Motlagh YG, Ahn HT, Hughes TJR, Calo VM (2013) Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method. Comput Fluids 71:146–155MathSciNetMATHCrossRef
70.
Zurück zum Zitat Bazilevs Y, Yan J, De Stadler M, Sarkar S (2014a) Computation of the flow over a sphere at Re= 3700: A comparison of uniform and turbulent inflow conditions. J Appl Mech 81(12) Bazilevs Y, Yan J, De Stadler M, Sarkar S (2014a) Computation of the flow over a sphere at Re= 3700: A comparison of uniform and turbulent inflow conditions. J Appl Mech 81(12)
71.
Zurück zum Zitat Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152MathSciNetMATHCrossRef Akkerman I, Bazilevs Y, Kees CE, Farthing MW (2011) Isogeometric analysis of free-surface flow. J Comput Phys 230:4137–4152MathSciNetMATHCrossRef
72.
Zurück zum Zitat Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012a) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79 Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2012a) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. J Appl Mech 79
73.
Zurück zum Zitat Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012b) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRef Akkerman I, Dunaway J, Kvandal J, Spinks J, Bazilevs Y (2012b) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Comput Mech 50:719–727CrossRef
82.
93.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Ming-Chen Hsu, Otoguro Y, Mochizuki H, Wu MCH (2020) bALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 195–233. https://doi.org/10.1007/978-3-030-43736-7_7CrossRefMATH Bazilevs Y, Takizawa K, Tezduyar TE, Ming-Chen Hsu, Otoguro Y, Mochizuki H, Wu MCH (2020) bALE and space–time variational multiscale isogeometric analysis of wind turbines and turbomachinery. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 195–233. https://​doi.​org/​10.​1007/​978-3-030-43736-7_​7CrossRefMATH
94.
Zurück zum Zitat Otoguro Y, Mochizuki H, Takizawa K, Tezduyar TE (2019a) Space–time variational multiscale isogeometric analysis of a tsunami-shelter vertical axis wind turbine. in preparation Otoguro Y, Mochizuki H, Takizawa K, Tezduyar TE (2019a) Space–time variational multiscale isogeometric analysis of a tsunami-shelter vertical axis wind turbine. in preparation
100.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020b) Variational multiscale flow analysis in aerospace, energy and transportation technologies. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 235–280. https://doi.org/10.1007/978-3-030-43736-7_8CrossRefMATH Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020b) Variational multiscale flow analysis in aerospace, energy and transportation technologies. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 235–280. https://​doi.​org/​10.​1007/​978-3-030-43736-7_​8CrossRefMATH
101.
Zurück zum Zitat Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83 (6) Bazilevs Y, Korobenko A, Deng X, Yan J (2016) FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades. J Appl Mech 83 (6)
103.
Zurück zum Zitat Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014c) FSI modeling of vertical-axis wind turbines. J Appl Mech 10(1115/1):4027466 Bazilevs Y, Korobenko A, Deng X, Yan J, Kinzel M, Dabiri JO (2014c) FSI modeling of vertical-axis wind turbines. J Appl Mech 10(1115/1):4027466
104.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253MATHCrossRef Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011b) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253MATHCrossRef
105.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetMATHCrossRef Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49:93–100MathSciNetMATHCrossRef
106.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetMATHCrossRef
107.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2014a) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481CrossRef Hsu M-C, Akkerman I, Bazilevs Y (2014a) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy 17:461–481CrossRef
108.
Zurück zum Zitat Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013b) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetMATHCrossRef Korobenko A, Hsu M-C, Akkerman I, Tippmann J, Bazilevs Y (2013b) Structural mechanics modeling and FSI simulation of wind turbines. Math Models Methods Appl Sci 23:249–272MathSciNetMATHCrossRef
110.
Zurück zum Zitat Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty-2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 253–336. https://doi.org/10.1007/978-3-319-96469-0_7CrossRef Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty-2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 253–336. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​7CrossRef
113.
Zurück zum Zitat Takizawa K, Terahara T, Tezduyar TE (2020c) Space–time flow computation with contact between the moving solid surfaces. To appear in a special volume to be published by Springer Takizawa K, Terahara T, Tezduyar TE (2020c) Space–time flow computation with contact between the moving solid surfaces. To appear in a special volume to be published by Springer
114.
Zurück zum Zitat Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018a) Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture notes in applied and computational mechanics. Springer, Berlin, pp 77–99. https://doi.org/10.1007/978-3-319-59548-1_6CrossRef Takizawa K, Tezduyar TE, Terahara T, Sasaki T (2018a) Heart valve flow computation with the space-time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In: Wriggers P, Lenarz T (eds) Biomedical technology: modeling, experiments and simulation. Lecture notes in applied and computational mechanics. Springer, Berlin, pp 77–99. https://​doi.​org/​10.​1007/​978-3-319-59548-1_​6CrossRef
116.
Zurück zum Zitat Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018b) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 29–89. https://doi.org/10.1007/978-3-319-96469-0_2CrossRef Takizawa K, Tezduyar TE, Uchikawa H, Terahara T, Sasaki T, Shiozaki K, Yoshida A, Komiya K, Inoue G (2018b) Aorta flow analysis and heart valve flow and structure analysis. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty—2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 29–89. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​2CrossRef
118.
Zurück zum Zitat Hughes TJR, Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019) Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, Modeling and simulation in science, engineering and technology. Springer, Berlin Hughes TJR, Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C (2019) Computational cardiovascular analysis with the variational multiscale methods and isogeometric discretization. In: Grama A, Sameh A (eds) Parallel algorithms in computational science and engineering, Modeling and simulation in science, engineering and technology. Springer, Berlin
121.
Zurück zum Zitat Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 379–386. https://doi.org/10.1007/978-3-319-40827-9_29CrossRefMATH Suito H, Takizawa K, Huynh VQH, Sze D, Ueda T, Tezduyar TE (2016) A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 379–386. https://​doi.​org/​10.​1007/​978-3-319-40827-9_​29CrossRefMATH
127.
Zurück zum Zitat Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225. https://doi.org/10.1007/s00466-015-1166-xCrossRefMATH Hsu M-C, Kamensky D, Xu F, Kiendl J, Wang C, Wu MCH, Mineroff J, Reali A, Bazilevs Y, Sacks MS (2015) Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech 55:1211–1225. https://​doi.​org/​10.​1007/​s00466-015-1166-xCrossRefMATH
128.
Zurück zum Zitat Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetMATHCrossRef Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053MathSciNetMATHCrossRef
129.
Zurück zum Zitat Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322MathSciNetMATHCrossRef
130.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef
131.
Zurück zum Zitat Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009a) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetMATHCrossRef Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009a) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550MathSciNetMATHCrossRef
132.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009b) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009b) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89MathSciNetMATHCrossRef
133.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010a) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetMATHCrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010a) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16MathSciNetMATHCrossRef
134.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010b) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010b) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498CrossRef
135.
Zurück zum Zitat Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599MathSciNetCrossRef
136.
Zurück zum Zitat Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012b) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 10(1115/1):4005073MATH Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012b) Space–time computational techniques for the aerodynamics of flapping wings. J Appl Mech 10(1115/1):4005073MATH
150.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 399–434. https://doi.org/10.1007/978-3-319-96469-0_10CrossRef Otoguro Y, Takizawa K, Tezduyar TE (2018) A general-purpose NURBS mesh generation method for complex geometries. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 399–434. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​10CrossRef
153.
Zurück zum Zitat Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology. Springer, Berlib, pp 159–178. https://doi.org/10.1007/978-3-319-40827-9_13CrossRef Takizawa K, Tezduyar TE (2016) New directions in space-time computational methods. In: Bazilevs Y, Takizawa K (eds) Advances in computational fluid-structure interaction and flow simulation: new methods and challenging computations, Modeling and simulation in science, engineering and technology. Springer, Berlib, pp 159–178. https://​doi.​org/​10.​1007/​978-3-319-40827-9_​13CrossRef
155.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 337–376. https://doi.org/10.1007/978-3-319-96469-0_8CrossRef Kuraishi T, Takizawa K, Tezduyar TE (2018) Space-time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, Modeling and simulation in science, engineering and technology. Springer, Berlin, pp 337–376. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​8CrossRef
158.
Zurück zum Zitat Tezduyar TE, Takizawa K, Kuraishi T (2020). Space–time computational FSI and flow analysis: 2004 and beyond. To appear in a special volume to be published by Springer Tezduyar TE, Takizawa K, Kuraishi T (2020). Space–time computational FSI and flow analysis: 2004 and beyond. To appear in a special volume to be published by Springer
171.
Zurück zum Zitat Rouse H, McNown JS (1948). Cavitation and pressure distribution: head forms at zero angle of yaw. Technical report, State University of Iowa Rouse H, McNown JS (1948). Cavitation and pressure distribution: head forms at zero angle of yaw. Technical report, State University of Iowa
172.
Zurück zum Zitat Rayleigh Lord. VIII (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98 Rayleigh Lord. VIII (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98
173.
Zurück zum Zitat Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9(1):145–185MATHCrossRef Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9(1):145–185MATHCrossRef
174.
Zurück zum Zitat Yeckel A, Derby JJ (1999) On setting a pressure datum when computing incompressible flows. Int J Numer Methods Fluids 29(1):19–34MATHCrossRef Yeckel A, Derby JJ (1999) On setting a pressure datum when computing incompressible flows. Int J Numer Methods Fluids 29(1):19–34MATHCrossRef
175.
Zurück zum Zitat Owis FM, Nayfeh AH (2001). Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile. In: 39th aerospace sciences meeting and exhibit, p 1042 Owis FM, Nayfeh AH (2001). Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile. In: 39th aerospace sciences meeting and exhibit, p 1042
176.
Zurück zum Zitat Owis FM, Nayfeh AH (2004) Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles. Eur J Mech-B/Fluids 23(2):339–351MATHCrossRef Owis FM, Nayfeh AH (2004) Numerical simulation of 3-D incompressible, multi-phase flows over cavitating projectiles. Eur J Mech-B/Fluids 23(2):339–351MATHCrossRef
177.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetMATHCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetMATHCrossRef
178.
Zurück zum Zitat Akin J, Tezduyar TE, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70(1):2–9MATHCrossRef Akin J, Tezduyar TE, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70(1):2–9MATHCrossRef
179.
Zurück zum Zitat Tezduyar TE, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4(1):71–88MathSciNetMATH Tezduyar TE, Sathe S (2003) Stabilization parameters in SUPG and PSPG formulations. J Comput Appl Mech 4(1):71–88MathSciNetMATH
180.
Zurück zum Zitat Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36(2):191–206MathSciNetMATHCrossRef Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36(2):191–206MathSciNetMATHCrossRef
181.
Zurück zum Zitat Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57(9):1189–1209MathSciNetMATHCrossRef Tezduyar TE, Ramakrishnan S, Sathe S (2008) Stabilized formulations for incompressible flows with thermal coupling. Int J Numer Methods Fluids 57(9):1189–1209MathSciNetMATHCrossRef
182.
Zurück zum Zitat Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199(13–16):828–840MathSciNetMATHCrossRef Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199(13–16):828–840MathSciNetMATHCrossRef
184.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE (2019d) Element length calculation in B-spline meshes for complex ceometries. Comput Mech, submitted Otoguro Y, Takizawa K, Tezduyar TE (2019d) Element length calculation in B-spline meshes for complex ceometries. Comput Mech, submitted
185.
Zurück zum Zitat Hughes TJR, Mallet M, Akira M (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355MathSciNetMATHCrossRef Hughes TJR, Mallet M, Akira M (1986) A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput Methods Appl Mech Eng 54(3):341–355MathSciNetMATHCrossRef
186.
Zurück zum Zitat Tezduyar TE, Park YJ (1986) Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59(3):307–325MATHCrossRef Tezduyar TE, Park YJ (1986) Discontinuity-capturing finite element formulations for nonlinear convection–diffusion–reaction equations. Comput Methods Appl Mech Eng 59(3):307–325MATHCrossRef
187.
Zurück zum Zitat Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5):555–575MathSciNetMATHCrossRef Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43(5):555–575MathSciNetMATHCrossRef
188.
Zurück zum Zitat Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–26MathSciNetMATHCrossRef Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–26MathSciNetMATHCrossRef
189.
Zurück zum Zitat Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862MathSciNetMATHCrossRef Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196(49–52):4853–4862MathSciNetMATHCrossRef
190.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J Appl Mech
191.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetMATHCrossRef Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetMATHCrossRef
192.
Zurück zum Zitat Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM Saad Y (2003) Iterative methods for sparse linear systems, vol 82. SIAM
193.
Zurück zum Zitat Kim S-E (2008) A multiphase approach to turbulent cavitating flow. In: Proceedings of 27th symposium on Naval Hydrodynamics, Seoul, Korea, 2008, pp 572–589 Kim S-E (2008) A multiphase approach to turbulent cavitating flow. In: Proceedings of 27th symposium on Naval Hydrodynamics, Seoul, Korea, 2008, pp 572–589
194.
Zurück zum Zitat Guaily AG, Epstein M (2013) Boundary conditions for hyperbolic systems of partial differentials equations. J Adv Res 4(4):321–329CrossRef Guaily AG, Epstein M (2013) Boundary conditions for hyperbolic systems of partial differentials equations. J Adv Res 4(4):321–329CrossRef
195.
Zurück zum Zitat Ayyad M, Guaily A, Hassanein MA (2020). Stabilized variational formulation of an oldroyd-B fluid flow equations on a graphic processing unit (GPU) architecture. Comput Phys Commun, p 107495 Ayyad M, Guaily A, Hassanein MA (2020). Stabilized variational formulation of an oldroyd-B fluid flow equations on a graphic processing unit (GPU) architecture. Comput Phys Commun, p 107495
196.
Zurück zum Zitat Wagner W, Kretzschmar H-J (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97: Tables, algorithms, diagrams, and CD-ROM electronic steam tables-all of the equations of IAPWS-IF97 including a complete set of supplementary backward equations for fast calculations of heat cycles, boilers, and steam turbines. Springer Wagner W, Kretzschmar H-J (2007) International steam tables-properties of water and steam based on the industrial formulation IAPWS-IF97: Tables, algorithms, diagrams, and CD-ROM electronic steam tables-all of the equations of IAPWS-IF97 including a complete set of supplementary backward equations for fast calculations of heat cycles, boilers, and steam turbines. Springer
197.
Zurück zum Zitat Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7) Celik IB, Ghia U, Roache PJ, Freitas CJ (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7)
Metadaten
Titel
A numerical formulation for cavitating flows around marine propellers based on variational multiscale method
verfasst von
A. Bayram
A. Korobenko
Publikationsdatum
19.06.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-021-02039-9

Weitere Artikel der Ausgabe 2/2021

Computational Mechanics 2/2021 Zur Ausgabe

Neuer Inhalt