Skip to main content
Erschienen in: Neural Computing and Applications 21/2021

13.06.2021 | Original Article

Multistability and circuit implementation of tabu learning two-neuron model: application to secure biomedical images in IoMT

verfasst von: Isaac Sami Doubla, Zeric Tabekoueng Njitacke, Sone Ekonde, Nestor Tsafack, J. D. D. Nkapkop, Jacques Kengne

Erschienen in: Neural Computing and Applications | Ausgabe 21/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the dynamics of a non-autonomous tabu learning two-neuron model is investigated. The model is obtained by building a tabu learning two-neuron (TLTN) model with a composite hyperbolic tangent function consisting of three hyperbolic tangent functions with different offsets. The possibility to adjust the compound activation function is exploited to report the sensitivity of non-trivial equilibrium points with respect to the parameters. Analysis tools like bifurcation diagram, Lyapunov exponents, phase portraits, and basin of attraction are used to explore various windows in which the neuron model under the consideration displays the uncovered phenomenon of the coexistence of up to six disconnected stable states for the same set of system parameters in a TLTN. In addition to the multistability, nonlinear phenomena such as period-doubling bifurcation, hysteretic dynamics, and parallel bifurcation branches are found when the control parameter is tuned. The analog circuit is built in PSPICE environment, and simulations are performed to validate the obtained results as well as the correctness of the numerical methods. Finally, an encryption/decryption algorithm is designed based on a modified Julia set and confusion–diffusion operations with the sequences of the proposed TLTN model. The security performances of the built cryptosystem are analyzed in terms of computational time (CT = 1.82), encryption throughput (ET = 151.82 MBps), number of cycles (NC = 15.80), NPCR = 99.6256, UACI = 33.6512, χ2-values = 243.7786, global entropy = 7.9992, and local entropy = 7.9083. Note that the presented values are the optimal results. These results demonstrate that the algorithm is highly secured compared to some fastest neuron chaos-based cryptosystems and is suitable for a sensitive field like IoMT security.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Beyer D, Ogier RG (1991) Tabu learning: a neural network search method for solving nonconvex optimization problems. In: [Proceedings] 1991 IEEE International Joint Conference on Neural Networks, pp 953–961. IEEE Beyer D, Ogier RG (1991) Tabu learning: a neural network search method for solving nonconvex optimization problems. In: [Proceedings] 1991 IEEE International Joint Conference on Neural Networks, pp 953–961. IEEE
4.
Zurück zum Zitat Li C, Chen G, Liao X (2005) Yu, J, Chaos: Hopf bifurcation and chaos in tabu learning neuron models. Int. J. Bifurcation Chaos 15(08):2633–2642MATHCrossRef Li C, Chen G, Liao X (2005) Yu, J, Chaos: Hopf bifurcation and chaos in tabu learning neuron models. Int. J. Bifurcation Chaos 15(08):2633–2642MATHCrossRef
5.
Zurück zum Zitat Zhou X, Wu Y, Li Y, Ye Y (2006) Hopf bifurcation analysis on a tabu learning single neuron model in the frequency domain. In: 2006 International Conference on Communications, Circuits and Systems 2006, pp 2042–2045. IEEE Zhou X, Wu Y, Li Y, Ye Y (2006) Hopf bifurcation analysis on a tabu learning single neuron model in the frequency domain. In: 2006 International Conference on Communications, Circuits and Systems 2006, pp 2042–2045. IEEE
6.
7.
Zurück zum Zitat Jun C, Chun-Guang L (2011) Circuit design of tabu learning neuron models and their dynamic behavior. Acta Phys Sin 60(2):020502CrossRef Jun C, Chun-Guang L (2011) Circuit design of tabu learning neuron models and their dynamic behavior. Acta Phys Sin 60(2):020502CrossRef
9.
Zurück zum Zitat Bao B, Hou L, Zhu Y, Wu H, Chen M (2020) Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEU Int J Electron Commun 121:153235CrossRef Bao B, Hou L, Zhu Y, Wu H, Chen M (2020) Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEU Int J Electron Commun 121:153235CrossRef
11.
Zurück zum Zitat Bao B, Chen C, Bao H, Zhang X, Xu Q, Chen M (2019) Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int J Bifur Chaos 29(04):1930010MathSciNetMATHCrossRef Bao B, Chen C, Bao H, Zhang X, Xu Q, Chen M (2019) Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int J Bifur Chaos 29(04):1930010MathSciNetMATHCrossRef
12.
Zurück zum Zitat Bao B, Qian H, Wang J, Xu Q, Chen M, Wu H, Yu Y (2017) Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn 90(4):2359–2369MathSciNetCrossRef Bao B, Qian H, Wang J, Xu Q, Chen M, Wu H, Yu Y (2017) Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn 90(4):2359–2369MathSciNetCrossRef
13.
Zurück zum Zitat Bao B, Qian H, Xu Q, Chen M, Wang J, Yu Y (2017) Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front Comput Neurosci 11:81CrossRef Bao B, Qian H, Xu Q, Chen M, Wang J, Yu Y (2017) Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Front Comput Neurosci 11:81CrossRef
14.
Zurück zum Zitat Chen C, Bao H, Chen M, Xu Q, Bao B (2019) Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments. AEU-Int J Electron Commun 111:152894CrossRef Chen C, Bao H, Chen M, Xu Q, Bao B (2019) Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments. AEU-Int J Electron Commun 111:152894CrossRef
15.
Zurück zum Zitat Chen C, Chen J, Bao H, Chen M, Bao B (2019) Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn 95(4):3385–3399MATHCrossRef Chen C, Chen J, Bao H, Chen M, Bao B (2019) Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn 95(4):3385–3399MATHCrossRef
16.
Zurück zum Zitat Dan Z, Huang W, Huang YJ (2010) Chaos and rigorous verification of horseshoes in a class of Hopfield neural networks. Neural Comput Appl 19(1):159–166MathSciNetCrossRef Dan Z, Huang W, Huang YJ (2010) Chaos and rigorous verification of horseshoes in a class of Hopfield neural networks. Neural Comput Appl 19(1):159–166MathSciNetCrossRef
17.
Zurück zum Zitat Duan S, Dong Z, Hu X, Wang L, Li H (2016) Applications: Small-world Hopfield neural networks with weight salience priority and memristor synapses for digit recognition. Neural Comput Appl 27(4):837–844CrossRef Duan S, Dong Z, Hu X, Wang L, Li H (2016) Applications: Small-world Hopfield neural networks with weight salience priority and memristor synapses for digit recognition. Neural Comput Appl 27(4):837–844CrossRef
18.
Zurück zum Zitat Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535):33–36CrossRef Hopfield JJ (1995) Pattern recognition computation using action potential timing for stimulus representation. Nature 376(6535):33–36CrossRef
19.
Zurück zum Zitat Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci 81(10):3088–3092MATHCrossRef Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci 81(10):3088–3092MATHCrossRef
20.
Zurück zum Zitat Lakshmi C, Thenmozhi K, Rayappan JBB, Amirtharajan R (2019) Applications: Hopfield attractor-trusted neural network: an attack-resistant image encryption. Neural Comput Appl 13:1–13 Lakshmi C, Thenmozhi K, Rayappan JBB, Amirtharajan R (2019) Applications: Hopfield attractor-trusted neural network: an attack-resistant image encryption. Neural Comput Appl 13:1–13
21.
Zurück zum Zitat Mathias AC, Rech PC (2012) Hopfield neural network: the hyperbolic tangent and the piecewise-linear activation functions. Neural Netw 34:42–45CrossRef Mathias AC, Rech PC (2012) Hopfield neural network: the hyperbolic tangent and the piecewise-linear activation functions. Neural Netw 34:42–45CrossRef
22.
Zurück zum Zitat Njitacke Z, Kengne J, Fostin H (2019) A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int J Dyn Control 7(1):36–52MathSciNetCrossRef Njitacke Z, Kengne J, Fostin H (2019) A plethora of behaviors in a memristor based Hopfield neural networks (HNNs). Int J Dyn Control 7(1):36–52MathSciNetCrossRef
23.
Zurück zum Zitat Njitacke Z, Kengne J, Fozin TF, Leutcha B, Fotsin HB (2019) Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states. Int J Dyn Control 7(3):823–841MathSciNetCrossRef Njitacke Z, Kengne J, Fozin TF, Leutcha B, Fotsin HB (2019) Dynamical analysis of a novel 4-neurons based Hopfield neural network: emergences of antimonotonicity and coexistence of multiple stable states. Int J Dyn Control 7(3):823–841MathSciNetCrossRef
24.
Zurück zum Zitat Njitacke ZT, Kengne J (2018) Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees. AEU-Int J Electron Commun 93:242–52CrossRef Njitacke ZT, Kengne J (2018) Complex dynamics of a 4D Hopfield neural networks (HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees. AEU-Int J Electron Commun 93:242–52CrossRef
25.
Zurück zum Zitat Njitacke ZT, Kengne J (2019) Nonlinear dynamics of three-neurons-based Hopfield neural networks (HNNs): Remerging Feigenbaum trees, coexisting bifurcations and multiple attractors. J Circuits Syst Comput 28(07):1950121CrossRef Njitacke ZT, Kengne J (2019) Nonlinear dynamics of three-neurons-based Hopfield neural networks (HNNs): Remerging Feigenbaum trees, coexisting bifurcations and multiple attractors. J Circuits Syst Comput 28(07):1950121CrossRef
26.
Zurück zum Zitat Njitacke ZT, Isaac SD, Kengne J, Negou AN, Leutcho GD (2020) Extremely rich dynamics from hyperchaotic Hopfield neural network: hysteretic dynamics, parallel bifurcation branches, coexistence of multiple stable states and its analog circuit implementation. Eur Phys J Special Topics 229:1133–1154CrossRef Njitacke ZT, Isaac SD, Kengne J, Negou AN, Leutcho GD (2020) Extremely rich dynamics from hyperchaotic Hopfield neural network: hysteretic dynamics, parallel bifurcation branches, coexistence of multiple stable states and its analog circuit implementation. Eur Phys J Special Topics 229:1133–1154CrossRef
27.
Zurück zum Zitat Njitacke ZT, Kengne J, Fotsin HB (2020) Coexistence of multiple stable states and bursting oscillations in a 4d Hopfield neural network. Circuits Syst Signal Process 39(7):3424–3444MATHCrossRef Njitacke ZT, Kengne J, Fotsin HB (2020) Coexistence of multiple stable states and bursting oscillations in a 4d Hopfield neural network. Circuits Syst Signal Process 39(7):3424–3444MATHCrossRef
28.
Zurück zum Zitat Xu Q, Song Z, Bao H, Chen M, Bao B (2018) Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AEU-Int J Electron Commun 96:66–74CrossRef Xu Q, Song Z, Bao H, Chen M, Bao B (2018) Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AEU-Int J Electron Commun 96:66–74CrossRef
29.
Zurück zum Zitat Xu Q, Song Z, Qian H, Chen M, Wu P, Bao B (2018) Numerical analyses and breadboard experiments of twin attractors in two-neuron-based non-autonomous Hopfield neural network. Eur Phys J Spec Top 227(7–9):777–786CrossRef Xu Q, Song Z, Qian H, Chen M, Wu P, Bao B (2018) Numerical analyses and breadboard experiments of twin attractors in two-neuron-based non-autonomous Hopfield neural network. Eur Phys J Spec Top 227(7–9):777–786CrossRef
30.
Zurück zum Zitat Yang J, Wang L, Wang Y, Guo T (2017) A novel memristive Hopfield neural network with application in associative memory. Neurocomputing 227:142–14CrossRef Yang J, Wang L, Wang Y, Guo T (2017) A novel memristive Hopfield neural network with application in associative memory. Neurocomputing 227:142–14CrossRef
31.
Zurück zum Zitat Zheng YG, Bao LJ (2014) Slow–fast dynamics of tri-neuron Hopfield neural network with two timescales. Commun Nonlinear Sci Numer Simul 19(5):1591–1599MathSciNetMATHCrossRef Zheng YG, Bao LJ (2014) Slow–fast dynamics of tri-neuron Hopfield neural network with two timescales. Commun Nonlinear Sci Numer Simul 19(5):1591–1599MathSciNetMATHCrossRef
32.
Zurück zum Zitat Bao B, Zhu Y, Li C, Bao H, Xu Q (2020) Global multistability and analog circuit implementation of an adapting synapse-based neuron model. Nonlinear Dyn 101:1–14CrossRef Bao B, Zhu Y, Li C, Bao H, Xu Q (2020) Global multistability and analog circuit implementation of an adapting synapse-based neuron model. Nonlinear Dyn 101:1–14CrossRef
34.
Zurück zum Zitat Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372(4):394–400MATHCrossRef Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372(4):394–400MATHCrossRef
35.
Zurück zum Zitat Lakshmi C, Thenmozhi K, Rayappan JBB, Amirtharajan R (2020) Hopfield attractor-trusted neural network: an attack-resistant image encryption. Neural Comput Appl 32(15):11477–11489CrossRef Lakshmi C, Thenmozhi K, Rayappan JBB, Amirtharajan R (2020) Hopfield attractor-trusted neural network: an attack-resistant image encryption. Neural Comput Appl 32(15):11477–11489CrossRef
36.
Zurück zum Zitat Wang X-Y, Li Z-M (2019) A color image encryption algorithm based on Hopfield chaotic neural network. Opt Lasers Eng 115:107–118CrossRef Wang X-Y, Li Z-M (2019) A color image encryption algorithm based on Hopfield chaotic neural network. Opt Lasers Eng 115:107–118CrossRef
37.
Zurück zum Zitat Zhou Y, Cao W, Chen CP (2014) Image encryption using binary bitplane. Signal Process 100:197–207CrossRef Zhou Y, Cao W, Chen CP (2014) Image encryption using binary bitplane. Signal Process 100:197–207CrossRef
38.
Zurück zum Zitat Doubla Isaac S, Njitacke ZT, Kengne J (2020) Effects of low and high neuron activation gradients on the dynamics of a simple 3D hopfield neural network. Int J Bifur Chaos 30(11):2050159MathSciNetMATHCrossRef Doubla Isaac S, Njitacke ZT, Kengne J (2020) Effects of low and high neuron activation gradients on the dynamics of a simple 3D hopfield neural network. Int J Bifur Chaos 30(11):2050159MathSciNetMATHCrossRef
39.
Zurück zum Zitat Kamdjeu Kengne L, Njitacke ZT, Pone JM, Tagne HK (2020) The effects of a constant excitation force on the dynamics of an infinite-equilibrium chaotic system without linear terms: analysis, control and circuit simulation. Int J Bifur Chaos 30(15):2050234MathSciNetMATHCrossRef Kamdjeu Kengne L, Njitacke ZT, Pone JM, Tagne HK (2020) The effects of a constant excitation force on the dynamics of an infinite-equilibrium chaotic system without linear terms: analysis, control and circuit simulation. Int J Bifur Chaos 30(15):2050234MathSciNetMATHCrossRef
40.
Zurück zum Zitat Bao B, Hou L, Zhu Y, Wu H, Chen M (2020) Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEU-Int J Electron Commun 121:153235CrossRef Bao B, Hou L, Zhu Y, Wu H, Chen M (2020) Bifurcation analysis and circuit implementation for a tabu learning neuron model. AEU-Int J Electron Commun 121:153235CrossRef
41.
Zurück zum Zitat Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D: Nonlinear Phenom 16(3):285–317MathSciNetMATHCrossRef Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Phys D: Nonlinear Phenom 16(3):285–317MathSciNetMATHCrossRef
42.
Zurück zum Zitat Strogatz SH (1994) Nonlinear dynamics and chaos. Addison-Wesley, New York Strogatz SH (1994) Nonlinear dynamics and chaos. Addison-Wesley, New York
44.
Zurück zum Zitat Kengne J, Njitacke Z, Fotsin H (2016) Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn 83(1):751–765MathSciNetCrossRef Kengne J, Njitacke Z, Fotsin H (2016) Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn 83(1):751–765MathSciNetCrossRef
45.
Zurück zum Zitat Babloyantz A, Lourenço C (1996) Brain chaos and computation. Int J Neural Syst 7(04):461–471CrossRef Babloyantz A, Lourenço C (1996) Brain chaos and computation. Int J Neural Syst 7(04):461–471CrossRef
46.
Zurück zum Zitat Fortuna L, Frasca M, Rizzo A (2003) Measurement: Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Trans Instrum Meas 52(6):1809–1814CrossRef Fortuna L, Frasca M, Rizzo A (2003) Measurement: Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Trans Instrum Meas 52(6):1809–1814CrossRef
47.
Zurück zum Zitat Filali RL, Benrejeb M, Borne P, Simulation N (2014) On observer-based secure communication design using discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 19(5):1424–1432MathSciNetMATHCrossRef Filali RL, Benrejeb M, Borne P, Simulation N (2014) On observer-based secure communication design using discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 19(5):1424–1432MathSciNetMATHCrossRef
48.
Zurück zum Zitat Duan S, Liao X (2007) An electronic implementation for Liao’s chaotic delayed neuron model with non-monotonous activation function. Phys Lett A 369(1–2):37–43CrossRef Duan S, Liao X (2007) An electronic implementation for Liao’s chaotic delayed neuron model with non-monotonous activation function. Phys Lett A 369(1–2):37–43CrossRef
49.
Zurück zum Zitat Rani M, Kumar V (2004) Superior mandelbrot set. J Korea Soc Math Educ Ser D Res Math Educ 8(4):279–291 Rani M, Kumar V (2004) Superior mandelbrot set. J Korea Soc Math Educ Ser D Res Math Educ 8(4):279–291
50.
Zurück zum Zitat Ashton K (2009) That ‘internet of things’ thing. RFID J 22(7):97–114 Ashton K (2009) That ‘internet of things’ thing. RFID J 22(7):97–114
51.
Zurück zum Zitat Islam SR, Kwak D, Kabir MH, Hossain M, Kwak K-S (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678–708CrossRef Islam SR, Kwak D, Kabir MH, Hossain M, Kwak K-S (2015) The internet of things for health care: a comprehensive survey. IEEE Access 3:678–708CrossRef
52.
Zurück zum Zitat Tsafack N, Kengne J, Abd-El-Atty B, Iliyasu AM, Hirota K, Abd EL-Latif AA (2020) Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf Sci 515:191–217MATHCrossRef Tsafack N, Kengne J, Abd-El-Atty B, Iliyasu AM, Hirota K, Abd EL-Latif AA (2020) Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf Sci 515:191–217MATHCrossRef
53.
Zurück zum Zitat Yang X, He X, Zhao J, Zhang Y, Zhang S, Xie P (2020) COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv prints, arXiv: 2003.13865 Yang X, He X, Zhao J, Zhang Y, Zhang S, Xie P (2020) COVID-CT-dataset: a CT scan dataset about COVID-19. arXiv prints, arXiv: 2003.13865
54.
Zurück zum Zitat Hua Z, Zhou Y, Huang H (2019) Cosine-transform-based chaotic system for image encryption. Inf Sci 480:403–419CrossRef Hua Z, Zhou Y, Huang H (2019) Cosine-transform-based chaotic system for image encryption. Inf Sci 480:403–419CrossRef
55.
Zurück zum Zitat Kanso A, Ghebleh M (2017) An algorithm for encryption of secret images into meaningful images. Opt Lasers Eng 90:196–208CrossRef Kanso A, Ghebleh M (2017) An algorithm for encryption of secret images into meaningful images. Opt Lasers Eng 90:196–208CrossRef
56.
Zurück zum Zitat Nestor T, De Dieu NJ, Jacques K, Yves EJ, Iliyasu AM, El-Latif A, Ahmed A (2020) A multidimensional hyperjerk oscillator: dynamics analysis, analogue and embedded systems implementation, and its application as a cryptosystem. Sensors 20(1):83CrossRef Nestor T, De Dieu NJ, Jacques K, Yves EJ, Iliyasu AM, El-Latif A, Ahmed A (2020) A multidimensional hyperjerk oscillator: dynamics analysis, analogue and embedded systems implementation, and its application as a cryptosystem. Sensors 20(1):83CrossRef
57.
Zurück zum Zitat Sneha P, Sankar S, Kumar AS (2020) A chaotic colour image encryption scheme combining Walsh-Hadamard transform and Arnold-Tent maps. J Ambient Intell Humaniz Comput 11(3):1289–1308CrossRef Sneha P, Sankar S, Kumar AS (2020) A chaotic colour image encryption scheme combining Walsh-Hadamard transform and Arnold-Tent maps. J Ambient Intell Humaniz Comput 11(3):1289–1308CrossRef
58.
Zurück zum Zitat Tsafack N, Sankar S, Abd-El-Atty B, Kengne J, Jithin K, Belazi A, Mehmood I, Bashir AK, Song O-Y, Abd El-Latif AA (2020) A new chaotic map with dynamic analysis and encryption application in Internet of Health Things. IEEE Access 8:137731–137744CrossRef Tsafack N, Sankar S, Abd-El-Atty B, Kengne J, Jithin K, Belazi A, Mehmood I, Bashir AK, Song O-Y, Abd El-Latif AA (2020) A new chaotic map with dynamic analysis and encryption application in Internet of Health Things. IEEE Access 8:137731–137744CrossRef
59.
Zurück zum Zitat Wang X, Feng L, Zhao H (2019) Fast image encryption algorithm based on parallel computing system. Inf Sci 486:340–358MATHCrossRef Wang X, Feng L, Zhao H (2019) Fast image encryption algorithm based on parallel computing system. Inf Sci 486:340–358MATHCrossRef
60.
Zurück zum Zitat Alawida M, Samsudin A, Teh JS, Alkhawaldeh RS (2019) A new hybrid digital chaotic system with applications in image encryption. Signal Process 160:45–58CrossRef Alawida M, Samsudin A, Teh JS, Alkhawaldeh RS (2019) A new hybrid digital chaotic system with applications in image encryption. Signal Process 160:45–58CrossRef
61.
Zurück zum Zitat Gong L, Qiu K, Deng C, Zhou N (2019) An image compression and encryption algorithm based on chaotic system and compressive sensing. Opt Laser Technol 115:257–267CrossRef Gong L, Qiu K, Deng C, Zhou N (2019) An image compression and encryption algorithm based on chaotic system and compressive sensing. Opt Laser Technol 115:257–267CrossRef
62.
Zurück zum Zitat Luo Y, Yu J, Lai W, Liu L (2019) A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimedia Tools Appl 78(15):22023–22043CrossRef Luo Y, Yu J, Lai W, Liu L (2019) A novel chaotic image encryption algorithm based on improved baker map and logistic map. Multimedia Tools Appl 78(15):22023–22043CrossRef
63.
Zurück zum Zitat Diaconu A-V (2016) Circular inter–intra pixels bit-level permutation and chaos-based image encryption. Inf Sci 355:314–327CrossRef Diaconu A-V (2016) Circular inter–intra pixels bit-level permutation and chaos-based image encryption. Inf Sci 355:314–327CrossRef
64.
Zurück zum Zitat Jithin K, Sankar S (2020) Colour image encryption algorithm combining, Arnold map, DNA sequence operation, and a Mandelbrot set. J Inf Security Appl 50:102428 Jithin K, Sankar S (2020) Colour image encryption algorithm combining, Arnold map, DNA sequence operation, and a Mandelbrot set. J Inf Security Appl 50:102428
65.
Zurück zum Zitat Liu L, Zhang Q, Wei X (2012) A RGB image encryption algorithm based on DNA encoding and chaos map. Comput Electr Eng 38(5):1240–1248CrossRef Liu L, Zhang Q, Wei X (2012) A RGB image encryption algorithm based on DNA encoding and chaos map. Comput Electr Eng 38(5):1240–1248CrossRef
66.
Zurück zum Zitat Volos CK, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Signal Processing 93(5):1328–1340CrossRef Volos CK, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Signal Processing 93(5):1328–1340CrossRef
67.
Zurück zum Zitat Modeste Nguimdo R, Tchitnga R, Woafo P (2013) Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation. Chaos 23(4):043122MathSciNetCrossRef Modeste Nguimdo R, Tchitnga R, Woafo P (2013) Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation. Chaos 23(4):043122MathSciNetCrossRef
Metadaten
Titel
Multistability and circuit implementation of tabu learning two-neuron model: application to secure biomedical images in IoMT
verfasst von
Isaac Sami Doubla
Zeric Tabekoueng Njitacke
Sone Ekonde
Nestor Tsafack
J. D. D. Nkapkop
Jacques Kengne
Publikationsdatum
13.06.2021
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 21/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-021-06130-3

Weitere Artikel der Ausgabe 21/2021

Neural Computing and Applications 21/2021 Zur Ausgabe

Premium Partner