Skip to main content
Erschienen in: Microsystem Technologies 5-7/2011

01.06.2011 | Technical Paper

Design and implementation of LQG\LTR controller for a magnetic telemanipulation system-performance evaluation and energy saving

verfasst von: Moein Mehrtash, Mir Behrad Khamesee

Erschienen in: Microsystem Technologies | Ausgabe 5-7/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with designing a telemanipulation system (TMS) for microrobotics applications. The TMS uses magnetic levitation technology for the three-dimensional (3-D) manipulation of a microrobot. The TMS is made up of two separate components: a magnetic drive unit and a microrobot. The magnetic drive unit is developed to generate the magnetic field for propelling the microrobot in an enclosed environment. The drive unit consists of electromagnets, a disc pole-piece for connecting the magnetic poles, and a yoke. To handle the 3-D high precision motion control of the microrobot, experimental magnetic field measurements coupled with numerical analysis were done to identify the dynamic model of levitation. This approach leads to the design of a linear quadratic gaussian (LQG) control system, based on the derived state-space model. Based on the PID controller performance, the LQG controller provides considerable improvement in transient response and cross coupling errors. The 3-D motion control capability of the LQG control method is verified experimentally, and it is demonstrated that the microrobot can be operated in the TMS workspace, vertical range of 30 mm and the horizontal range of \(32\times 32\,{\text{mm}}^2\), with RMS error on the order of \(10\,\upmu {\text{m}}\) in the vertical and \(2.2\,\upmu {\text{m}}\) in the horizontal direction. In the vertical motion, the cross coupling error of the LQG controller is nine times smaller than that of the PID controller. A pre-magnetized pole-piece is proposed to compensate for gravity effect and reduces the system’s energy consumption. This pole-piece provides 66% energy saving for the system’s workspace operations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Craig D, Mir BK (2007) Motion control of a large gap magnetic suspension system for microrobotic manipulation. J Phys D Appl Phys 40(11):3277CrossRef Craig D, Mir BK (2007) Motion control of a large gap magnetic suspension system for microrobotic manipulation. J Phys D Appl Phys 40(11):3277CrossRef
Zurück zum Zitat Dario P, Vallegi R, Carroza M, Monstesi M, Cocco M (1992) Microactuators for microrobots: a critical survey. J Micromech Microeng 2(3):141CrossRef Dario P, Vallegi R, Carroza M, Monstesi M, Cocco M (1992) Microactuators for microrobots: a critical survey. J Micromech Microeng 2(3):141CrossRef
Zurück zum Zitat Dechev N, Cleghorn WL, Mills JK (2004) Microassembly of 3-D microstructures using a compliant, passive microgripper. J Microelectromech Syst 13(2):176–189CrossRef Dechev N, Cleghorn WL, Mills JK (2004) Microassembly of 3-D microstructures using a compliant, passive microgripper. J Microelectromech Syst 13(2):176–189CrossRef
Zurück zum Zitat Doyle J (1978) Guaranteed margins for LQG regulators. IEEE Trans Automat Control 23(4):756–757CrossRef Doyle J (1978) Guaranteed margins for LQG regulators. IEEE Trans Automat Control 23(4):756–757CrossRef
Zurück zum Zitat Doyle JC, Stein G (1978) Robustness with observers. In: IEEE Conference on decision and control including the 17th symposium on adaptive processes, vol 17, pp 1–6 Doyle JC, Stein G (1978) Robustness with observers. In: IEEE Conference on decision and control including the 17th symposium on adaptive processes, vol 17, pp 1–6
Zurück zum Zitat Elbuken C, Khamesee MB, Yavuz M (2006) Eddy current damping for magnetic levitation: downscaling from macro- to micro-levitation. J Phys D Appl Phys 39(18):3932CrossRef Elbuken C, Khamesee MB, Yavuz M (2006) Eddy current damping for magnetic levitation: downscaling from macro- to micro-levitation. J Phys D Appl Phys 39(18):3932CrossRef
Zurück zum Zitat Elbuken C, Khamesee MB, Yavuz M (2009) Design and implementation of a micromanipulation system using a magnetically levitated MEMS robot. IEEE/ASME Trans Mech 14(4):434–445CrossRef Elbuken C, Khamesee MB, Yavuz M (2009) Design and implementation of a micromanipulation system using a magnetically levitated MEMS robot. IEEE/ASME Trans Mech 14(4):434–445CrossRef
Zurück zum Zitat Fukuda T, Hosokai H, Ohyama H, Hashimoto H, Arai F (1991) In: Micro Electro Mechanical Systems, 1991, MEMS ’91, Proceedings. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, pp 210–215 Fukuda T, Hosokai H, Ohyama H, Hashimoto H, Arai F (1991) In: Micro Electro Mechanical Systems, 1991, MEMS ’91, Proceedings. An investigation of micro structures, sensors, actuators, machines and robots. IEEE, pp 210–215
Zurück zum Zitat Jung KS, Baek YS (2002) Study on a novel contact-free planar system using direct drive DC coils and permanent magnets. IEEE/ASME Trans Mech 7(1):35–43CrossRef Jung KS, Baek YS (2002) Study on a novel contact-free planar system using direct drive DC coils and permanent magnets. IEEE/ASME Trans Mech 7(1):35–43CrossRef
Zurück zum Zitat Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mech 7(1):1–14CrossRef Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mech 7(1):1–14CrossRef
Zurück zum Zitat Khamesee MB, Shameli E (2007) Pole piece effect on improvement of magnetic controllability for noncontact micromanipulation. IIEEE/ASME Trans Magnetics 43(2):533–542CrossRef Khamesee MB, Shameli E (2007) Pole piece effect on improvement of magnetic controllability for noncontact micromanipulation. IIEEE/ASME Trans Magnetics 43(2):533–542CrossRef
Zurück zum Zitat Kim W-J, Verma S (2007) Multiaxis maglev positioner with nanometer resolution over extended travel range. J Dyn Syst Measure Control 129(6):777–785CrossRef Kim W-J, Verma S (2007) Multiaxis maglev positioner with nanometer resolution over extended travel range. J Dyn Syst Measure Control 129(6):777–785CrossRef
Zurück zum Zitat Li H, Tan J, Zhang M (2009) Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. IEEE Trans Automat Sci Eng 6(2):220–227CrossRef Li H, Tan J, Zhang M (2009) Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. IEEE Trans Automat Sci Eng 6(2):220–227CrossRef
Zurück zum Zitat Mathieu JB, Martel S (2007) MRI-based magnetic navigation of nanomedical devices for drug delivery and hyperthermia in deep tissues. In: 7th IEEE Conference on nanotechnology, 2007. IEEE-NANO 2007, vol 1, pp 312–315 Mathieu JB, Martel S (2007) MRI-based magnetic navigation of nanomedical devices for drug delivery and hyperthermia in deep tissues. In: 7th IEEE Conference on nanotechnology, 2007. IEEE-NANO 2007, vol 1, pp 312–315
Zurück zum Zitat Nakamura T, Khamesee M (1997) A prototype mechanism for three-dimensional levitated movement of a small magnet. IEEE/ASME Trans Mech 2(1):41–50CrossRef Nakamura T, Khamesee M (1997) A prototype mechanism for three-dimensional levitated movement of a small magnet. IEEE/ASME Trans Mech 2(1):41–50CrossRef
Zurück zum Zitat Ohji T, Hara H, Amei K, Sakui M (2008) Three-dimensional motion of a small object by using a new magnetic levitation system having four i-shaped electromagnets. IIEEE/ASME Trans Magnetics 44(11):4159–4162CrossRef Ohji T, Hara H, Amei K, Sakui M (2008) Three-dimensional motion of a small object by using a new magnetic levitation system having four i-shaped electromagnets. IIEEE/ASME Trans Magnetics 44(11):4159–4162CrossRef
Zurück zum Zitat Oppenheimer MW, Doman DB, Bolender MA (2006) Control allocation for over-actuated systems. In: MED ’06. 14th Mediterranean Conference on IEEE/ASME Trans Mech, pp 1–6 Oppenheimer MW, Doman DB, Bolender MA (2006) Control allocation for over-actuated systems. In: MED ’06. 14th Mediterranean Conference on IEEE/ASME Trans Mech, pp 1–6
Zurück zum Zitat Park H, Park S, Yoon E, Kim B, Park J, Park S (2007) Paddling based microrobot for capsule endoscopes. In: 2007 IEEE international conference on robotics and automation, pp 3377–3382 Park H, Park S, Yoon E, Kim B, Park J, Park S (2007) Paddling based microrobot for capsule endoscopes. In: 2007 IEEE international conference on robotics and automation, pp 3377–3382
Zurück zum Zitat Stein G, Athans M (1987) The LQG/LTR procedure for multivariable feedback control design. IEEE Trans Automatic Control 32(2):105–114MATHCrossRef Stein G, Athans M (1987) The LQG/LTR procedure for multivariable feedback control design. IEEE Trans Automatic Control 32(2):105–114MATHCrossRef
Zurück zum Zitat Stratton JA (2007) Electromagnetic theory. Wiley, Hoboken Stratton JA (2007) Electromagnetic theory. Wiley, Hoboken
Zurück zum Zitat Tamaz S, Gourdeau R, Chanu A, Mathieu JB, Martel S (2008) Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans Biomed Eng 55(7):1854–1863CrossRef Tamaz S, Gourdeau R, Chanu A, Mathieu JB, Martel S (2008) Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans Biomed Eng 55(7):1854–1863CrossRef
Zurück zum Zitat Zhang Z, Menq CH (2007) Six-axis magnetic levitation and motion control. IEEE Trans Robot 23(2):196–205CrossRef Zhang Z, Menq CH (2007) Six-axis magnetic levitation and motion control. IEEE Trans Robot 23(2):196–205CrossRef
Zurück zum Zitat Zhang H, Burdet E, Poo AN, Hutmacher DW (2008) Microassembly fabrication of tissue engineering scaffolds with customized design. IEEE Trans Automat Sci Eng 5(3):446–456CrossRef Zhang H, Burdet E, Poo AN, Hutmacher DW (2008) Microassembly fabrication of tissue engineering scaffolds with customized design. IEEE Trans Automat Sci Eng 5(3):446–456CrossRef
Metadaten
Titel
Design and implementation of LQG\LTR controller for a magnetic telemanipulation system-performance evaluation and energy saving
verfasst von
Moein Mehrtash
Mir Behrad Khamesee
Publikationsdatum
01.06.2011
Verlag
Springer-Verlag
Erschienen in
Microsystem Technologies / Ausgabe 5-7/2011
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-010-1210-x

Weitere Artikel der Ausgabe 5-7/2011

Microsystem Technologies 5-7/2011 Zur Ausgabe

Neuer Inhalt