Skip to main content
Erschienen in: Microsystem Technologies 10/2017

29.05.2017 | Technical Paper

Numerical and experimental analysis of cold gas microthruster geometric parameters by univariate and orthogonal method

verfasst von: Xiangming Xu, Xingchen Li, Jian Zhou, Baojun Zhang, Dingbang Xiao, Yiyong Huang, Xuezhong Wu

Erschienen in: Microsystem Technologies | Ausgabe 10/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microthruster has been playing significant role in micropropulsion system, of which micronozzle is the key component. In the present work, the geometric parameters of a typical micronozzle on a cold gas microthruster are first optimized using numerical univariate and orthogonal analysis combined with confirmation of thrust experiments. A 2 Dimension (2D) univariate numerical simulation, with only one geometric parameter varying within a large range during a simulation, is used to fully discuss the eight structural parameters of the proposed micronozzle. According to the effect of each parameter on the micronozzle performance, five critical factors, including half expansion angle θ out , expansion ratio W out /W t , throat width W t , throat radius of curvature R t , Inlet width W in and their corresponding proper levels range are selected. Then, a 2D orthogonal numerical simulation analysis is conducted utilizing an L 16(45) orthogonal table with the selected factors and levels. By analyzing the selected factors and levels simultaneously by range analysis method, the orders of significance of different factors are sorted and the optimum structural parameters are selected. The optimum result achieved in this study is identified as θ out of 15°, W t of 200 μm, W out /W t of 7, R t of 20 μm and W in of 4000 μm. Then, a 3 Dimension (3D) numerical simulation is conducted to predict and analyze the performance of the optimum microthruster when inlet pressure varies in three different values. When inlet pressure is 0.918 bar and temperature is 300 K, 3D simulation result shows that the microthruster using nitrogen as propellant can generate a thrust of 2.23 mN and efficiency of 72.14%. At last, an optimum cold gas microthruster adopting nitrogen gas as propellant is fabricated and tested. Experiment is conducted in three different inlet pressure. Results show that experimental values and simulation values are in agreement, which verifies the correctness of the simulation model. Under the inlet pressure of 0.918 bar and temperature of 300 K, the optimum microthruster can produce a thrust of 1.41 mN and efficiency of 52.84% when outlet pressure is set as 1000 Pa.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson DJ (2003) Modern compressible flow: with historical perspective. McGraw-Hill Book Company, Boston Anderson DJ (2003) Modern compressible flow: with historical perspective. McGraw-Hill Book Company, Boston
Zurück zum Zitat Bayt (1999) Analysis, fabrication and testing of a MEMS-based micropropulsion system. Dissertation, Massachusetts Institute of Technology Bayt (1999) Analysis, fabrication and testing of a MEMS-based micropropulsion system. Dissertation, Massachusetts Institute of Technology
Zurück zum Zitat Cheah KH, Chin JK (2011) Performance improvement on MEMS micropropulsion system through a novel two-depth micronozzle design. Acta Astronaut 69(1):59–70CrossRef Cheah KH, Chin JK (2011) Performance improvement on MEMS micropropulsion system through a novel two-depth micronozzle design. Acta Astronaut 69(1):59–70CrossRef
Zurück zum Zitat Chen CC, Liu CW, Kan HC et al (2010) Simulation and experiment research on vaporizing liquid micro-thruster. Sens Actuators A 157:140–149CrossRef Chen CC, Liu CW, Kan HC et al (2010) Simulation and experiment research on vaporizing liquid micro-thruster. Sens Actuators A 157:140–149CrossRef
Zurück zum Zitat Chen H, Zhang Y, Zhang M et al (2013) Performance prediction of conical nozzle using Navier-Stokes computation. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.2514/6.2013-3733 Chen H, Zhang Y, Zhang M et al (2013) Performance prediction of conical nozzle using Navier-Stokes computation. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.​2514/​6.​2013-3733
Zurück zum Zitat Gagne KR, Hitt DL, McDevitt MR (2016) Development of an additively manufactured microthruster for nanosatellite applications. 54th AIAA aerospace sciences meeting, p 0963 Gagne KR, Hitt DL, McDevitt MR (2016) Development of an additively manufactured microthruster for nanosatellite applications. 54th AIAA aerospace sciences meeting, p 0963
Zurück zum Zitat Jon A, Donghoon L (2013) Computational prediction of the thrust characteristics of a small thruster at low pressure condition. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.2514/6.2013-3908 Jon A, Donghoon L (2013) Computational prediction of the thrust characteristics of a small thruster at low pressure condition. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.​2514/​6.​2013-3908
Zurück zum Zitat Juergen M (1997) Thruster options for microspacecraft—A review and evaluation of existing hardware and emerging technologies. 33rd joint propulsion conference and exhibit. doi:10.2514/6.1997-3058 Juergen M (1997) Thruster options for microspacecraft—A review and evaluation of existing hardware and emerging technologies. 33rd joint propulsion conference and exhibit. doi:10.​2514/​6.​1997-3058
Zurück zum Zitat Karthikeyan K, Chou SK, Khoong LE, Tan YM, Lu CW, Yang WM (2012) Low temperature co-fired ceramic vaporizing liquid microthruster for microspacecraft applications. Appl Energy 97:577–583CrossRef Karthikeyan K, Chou SK, Khoong LE, Tan YM, Lu CW, Yang WM (2012) Low temperature co-fired ceramic vaporizing liquid microthruster for microspacecraft applications. Appl Energy 97:577–583CrossRef
Zurück zum Zitat Kean How C, Kai Seng K, Choon Lai C, Jit Kai C (2011) Progress on development of Al2O3-SiO2 ceramic MEMS-based monopropellant micropropulsion system. 47th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, doi:10.2514/6.2011-5923 Kean How C, Kai Seng K, Choon Lai C, Jit Kai C (2011) Progress on development of Al2O3-SiO2 ceramic MEMS-based monopropellant micropropulsion system. 47th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, doi:10.​2514/​6.​2011-5923
Zurück zum Zitat Kim I, Lee JW, Choi MK, Kwon S (2011) Optimum nozzle angle of a micro solid-propellant thruster. Nanoscale Microscale Thermophys Eng 15(3):165–178CrossRef Kim I, Lee JW, Choi MK, Kwon S (2011) Optimum nozzle angle of a micro solid-propellant thruster. Nanoscale Microscale Thermophys Eng 15(3):165–178CrossRef
Zurück zum Zitat Lekholm V, Palmer K, Ericson F, Thornell G (2011) Ceramic cold gas microthruster with integrated flow sensor. PowerMEMS 2011:167–170 Lekholm V, Palmer K, Ericson F, Thornell G (2011) Ceramic cold gas microthruster with integrated flow sensor. PowerMEMS 2011:167–170
Zurück zum Zitat Liu MH (2005) Numerical study on micronozzles. J Eng Thermophys Liu MH (2005) Numerical study on micronozzles. J Eng Thermophys
Zurück zum Zitat Ljubchenko FN, Fedenev AV, Chumakov AN, Bosak NA, Tarasenko VF, Panchenko AN (2008) Novel concept of laser-plasma microthruster design Proceedings of SPIE—The International Society for. Opt Eng 7005:700520 Ljubchenko FN, Fedenev AV, Chumakov AN, Bosak NA, Tarasenko VF, Panchenko AN (2008) Novel concept of laser-plasma microthruster design Proceedings of SPIE—The International Society for. Opt Eng 7005:700520
Zurück zum Zitat Louisos WF, Hitt DL (2008) Viscous effects on performance of two-dimensional supersonic linear micronozzles. J Spacecr Rockets 45:706–715CrossRef Louisos WF, Hitt DL (2008) Viscous effects on performance of two-dimensional supersonic linear micronozzles. J Spacecr Rockets 45:706–715CrossRef
Zurück zum Zitat Louisos W, Hitt DL (2012) Influence of wall heat transfer on supersonic micronozzle performance. J Spacecr Rockets 49:450–460CrossRef Louisos W, Hitt DL (2012) Influence of wall heat transfer on supersonic micronozzle performance. J Spacecr Rockets 49:450–460CrossRef
Zurück zum Zitat Louisos WF, Alexeenko AA, Hitt DL, Zilic A (2008) Design considerations for supersonic micronozzles. Int J Manuf Res 3(1):80–113CrossRef Louisos WF, Alexeenko AA, Hitt DL, Zilic A (2008) Design considerations for supersonic micronozzles. Int J Manuf Res 3(1):80–113CrossRef
Zurück zum Zitat Miyakawa N, Legner W, Ziemann T, Telitschkin D, Fecht H-J, Friedberger A (2012) MEMS-based microthruster with integrated platinum thin film resistance temperature detector (RTD), heater meander and thermal insulation for operation up to 1,000 °C. Microsyst Technol 18:1077–1087. doi:10.1007/s00542-012-1441-0 CrossRef Miyakawa N, Legner W, Ziemann T, Telitschkin D, Fecht H-J, Friedberger A (2012) MEMS-based microthruster with integrated platinum thin film resistance temperature detector (RTD), heater meander and thermal insulation for operation up to 1,000 °C. Microsyst Technol 18:1077–1087. doi:10.​1007/​s00542-012-1441-0 CrossRef
Zurück zum Zitat Mueller J, Hofer R, Ziemer J (2010) Survey of propulsion technologies applicable to cubesats Mueller J, Hofer R, Ziemer J (2010) Survey of propulsion technologies applicable to cubesats
Zurück zum Zitat Nathan GS, Stephen G, Xinfeng G (2013) A CFD Analysis of compressible flow through convergent-conical nozzles. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.2514/6.2013-3734 Nathan GS, Stephen G, Xinfeng G (2013) A CFD Analysis of compressible flow through convergent-conical nozzles. 49th AIAA/ASME/SAE/ASEE joint propulsion conference. doi:10.​2514/​6.​2013-3734
Zurück zum Zitat Piergentili F et al (2013) MEMS cold gas microthruster on Ursa Maior CubeSat. International Astronautical Federation Piergentili F et al (2013) MEMS cold gas microthruster on Ursa Maior CubeSat. International Astronautical Federation
Zurück zum Zitat Pranajaya F, Cappelli M (2001) Development of a colloid micro-thruster for flight demonstration on the Emerald nanosatellite. 37th Joint propulsion conference and exhibit. doi:10.2514/6.2001-3330 Pranajaya F, Cappelli M (2001) Development of a colloid micro-thruster for flight demonstration on the Emerald nanosatellite. 37th Joint propulsion conference and exhibit. doi:10.​2514/​6.​2001-3330
Zurück zum Zitat Raitses Y, Fisch N, Ertmer K, Burlingame C (2000) A study of cylindrical hall thruster for low power space applications. 36th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. doi:10.2514/6.2000-3421 Raitses Y, Fisch N, Ertmer K, Burlingame C (2000) A study of cylindrical hall thruster for low power space applications. 36th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. doi:10.​2514/​6.​2000-3421
Zurück zum Zitat Saad MA (1985) Compressible fluid flow. Prentice-Hall, New York Saad MA (1985) Compressible fluid flow. Prentice-Hall, New York
Zurück zum Zitat Shen Q, Yuan WZ, Li XP, Hao YC (2013) A fully decoupled design method for MEMS microthruster based on orthogonal analysis. Transducers & eurosensors Xxvii: the international conference on solid-state sensors, actuators and microsystems, pp 2353–2356 Shen Q, Yuan WZ, Li XP, Hao YC (2013) A fully decoupled design method for MEMS microthruster based on orthogonal analysis. Transducers & eurosensors Xxvii: the international conference on solid-state sensors, actuators and microsystems, pp 2353–2356
Zurück zum Zitat Shen Q, Yuan W, Li X, Xie J, Chang H (2014) An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters. Microsyst Technol 21:1157–1166. doi:10.1007/s00542-014-2240-6 CrossRef Shen Q, Yuan W, Li X, Xie J, Chang H (2014) An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters. Microsyst Technol 21:1157–1166. doi:10.​1007/​s00542-014-2240-6 CrossRef
Zurück zum Zitat Shen Q, Yuan W, Xie J, Chang H (2015) A quantitative optimisation model for a horizontal MEMS solid propellant thruster with experimental verification. Microsyst Technol 22:847–859. doi:10.1007/s00542-015-2486-7 CrossRef Shen Q, Yuan W, Xie J, Chang H (2015) A quantitative optimisation model for a horizontal MEMS solid propellant thruster with experimental verification. Microsyst Technol 22:847–859. doi:10.​1007/​s00542-015-2486-7 CrossRef
Zurück zum Zitat Xiong J, Zhou Z, Ye X, Wang X, Feng Y, Li Y (2002) A colloid micro-thruster system. Microelectron Eng 61–62:1031–1037CrossRef Xiong J, Zhou Z, Ye X, Wang X, Feng Y, Li Y (2002) A colloid micro-thruster system. Microelectron Eng 61–62:1031–1037CrossRef
Metadaten
Titel
Numerical and experimental analysis of cold gas microthruster geometric parameters by univariate and orthogonal method
verfasst von
Xiangming Xu
Xingchen Li
Jian Zhou
Baojun Zhang
Dingbang Xiao
Yiyong Huang
Xuezhong Wu
Publikationsdatum
29.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 10/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3451-4

Weitere Artikel der Ausgabe 10/2017

Microsystem Technologies 10/2017 Zur Ausgabe

Neuer Inhalt