Skip to main content
Erschienen in: Microsystem Technologies 7/2018

23.01.2018 | Technical Paper

Two dimensional boundary layer flow with heat and mass transfer of magneto hydrodynamic non-Newtonian nanofluid through porous medium over a semi-infinite moving plate

verfasst von: N. T. Eldabe, M. E. Gabr, S. A. Zaher

Erschienen in: Microsystem Technologies | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Steady two-dimensional motion of an incompressible non-Newtonian Nanofluid through porous medium over a semi-infinite moving plate is studied . The system is stressed by an external uniform magnetic field. The heat and mass transfer are considered with the flow of non-Newtonian fluid which obeys the Eyring–Powell model. The problem is mathematically formulated and solved numerically using the ParametricNDSolve-Mathematica package. The effects of the physical parameters of the problem such as, permeability, chemical reaction as well as the fluid material parameters Hartmann number, Eckert number and Reynolds number are discussed and illustrated in figures with some important applications. The results show that the fluid velocity increases with the increases of porosity parameter as well as the material parameter, but it decreases with the increase of the magnetic field. Increasing the magnetic field decreases porosity, temperature and concentration. The effects of some physical quantities on fluid velocity distribution can be neglected.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49:1663–1668CrossRef Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49:1663–1668CrossRef
Zurück zum Zitat Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME international mechanical engineering congress and exposition. San Francisco USA ASE FED 231/MD, vol 66, pp 99–105 Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME international mechanical engineering congress and exposition. San Francisco USA ASE FED 231/MD, vol 66, pp 99–105
Zurück zum Zitat Choi SUS, Zhang ZG, Lockwood W, Yu FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef Choi SUS, Zhang ZG, Lockwood W, Yu FE, Grulke EA (2001) Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254CrossRef
Zurück zum Zitat Cimpean DS, Pop I (2012) Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int J Heat Mass Transf 55:907–914CrossRefMATH Cimpean DS, Pop I (2012) Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. Int J Heat Mass Transf 55:907–914CrossRefMATH
Zurück zum Zitat Eldabe NTM, Hassan AA, Mona AA (2003) Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Zeitschrift für Naturforschung A 58(4):204–210CrossRef Eldabe NTM, Hassan AA, Mona AA (2003) Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates. Zeitschrift für Naturforschung A 58(4):204–210CrossRef
Zurück zum Zitat Eldabe NTM, Sallam NS, Abou-Zeid MY (2012) Numerical study of viscous dissipation effect on free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium. J the Egypt Math Soc 20:139–151MathSciNetCrossRefMATH Eldabe NTM, Sallam NS, Abou-Zeid MY (2012) Numerical study of viscous dissipation effect on free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium. J the Egypt Math Soc 20:139–151MathSciNetCrossRefMATH
Zurück zum Zitat Farooq U, Hayat T, Alsaedi A, Liao S (2014) Heat and mass transfer of two-layer flows of third-grade nanofluids in a vertical channel. Appl Math Comput 242:528–540MathSciNetMATH Farooq U, Hayat T, Alsaedi A, Liao S (2014) Heat and mass transfer of two-layer flows of third-grade nanofluids in a vertical channel. Appl Math Comput 242:528–540MathSciNetMATH
Zurück zum Zitat Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano-fluid. Comput Fluid 111:69–75MathSciNetCrossRef Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano-fluid. Comput Fluid 111:69–75MathSciNetCrossRef
Zurück zum Zitat Haq RU, Khan ZH, Khan WA (2014) Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface. Phys E 63:215–222CrossRef Haq RU, Khan ZH, Khan WA (2014) Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface. Phys E 63:215–222CrossRef
Zurück zum Zitat Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B 457(15):40–47CrossRef Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B 457(15):40–47CrossRef
Zurück zum Zitat Hayat T, Iqbal Z, Qasim M, Obaidat S (2012) Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int J Heat Mass Transf 55:1817–1822CrossRef Hayat T, Iqbal Z, Qasim M, Obaidat S (2012) Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int J Heat Mass Transf 55:1817–1822CrossRef
Zurück zum Zitat Islam S, Shah A, Zhou CY, Ali I (2009) Homotopy perturbation analysis of slider bearing with Powell–Eyring fluid. Z Angew Math Phys ZAMP 60:1178–1193MathSciNetCrossRefMATH Islam S, Shah A, Zhou CY, Ali I (2009) Homotopy perturbation analysis of slider bearing with Powell–Eyring fluid. Z Angew Math Phys ZAMP 60:1178–1193MathSciNetCrossRefMATH
Zurück zum Zitat Khan JA, Mustafa M, Hayat T, Farooq MA, Alsaedi A, Liao SJ (2014) On model for three- dimensional flow of nanofluid. An application to solar energy. J Mol Liq 194:41–47CrossRef Khan JA, Mustafa M, Hayat T, Farooq MA, Alsaedi A, Liao SJ (2014) On model for three- dimensional flow of nanofluid. An application to solar energy. J Mol Liq 194:41–47CrossRef
Zurück zum Zitat Kuzentsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247CrossRef Kuzentsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247CrossRef
Zurück zum Zitat Maity S (2016) Unsteady flow of thin nanoliquid film over a stretching sheet in the presence of thermal radiation. Eur Phys J Plus 131(2):49 (1–15) CrossRef Maity S (2016) Unsteady flow of thin nanoliquid film over a stretching sheet in the presence of thermal radiation. Eur Phys J Plus 131(2):49 (1–15) CrossRef
Zurück zum Zitat Maity S (2017) Thermocapillary flow of thin Cu-water nanoliquid film during spin coating process. Int Nano Lett 7(1):9–23CrossRef Maity S (2017) Thermocapillary flow of thin Cu-water nanoliquid film during spin coating process. Int Nano Lett 7(1):9–23CrossRef
Zurück zum Zitat Nadeem S, Haq RU, Khan ZH (2014) Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Eng J 53:219–224CrossRef Nadeem S, Haq RU, Khan ZH (2014) Heat transfer analysis of water-based nanofluid over an exponentially stretching sheet. Alexandria Eng J 53:219–224CrossRef
Zurück zum Zitat Patel M, Timol MG (2009) Numerical treatment of Powell–Eyring fluid flow using method of asymptotic boundary conditions. Appl Numer Math 59:2584–2592MathSciNetCrossRefMATH Patel M, Timol MG (2009) Numerical treatment of Powell–Eyring fluid flow using method of asymptotic boundary conditions. Appl Numer Math 59:2584–2592MathSciNetCrossRefMATH
Zurück zum Zitat Powell RE, Eyring H (1944) Mechanism for relaxation theory of viscosity. Nature 154:427–428CrossRef Powell RE, Eyring H (1944) Mechanism for relaxation theory of viscosity. Nature 154:427–428CrossRef
Zurück zum Zitat Rashidi MM, Abelman S, Mehr NF (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525CrossRef Rashidi MM, Abelman S, Mehr NF (2013) Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf 62:515–525CrossRef
Zurück zum Zitat Sheikholeslami M, Gorji-Bandpay M, Ganji D (2012) Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int Commun Heat Mass Transf 39:978–986CrossRef Sheikholeslami M, Gorji-Bandpay M, Ganji D (2012) Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int Commun Heat Mass Transf 39:978–986CrossRef
Zurück zum Zitat Sheikholeslami M, Hatami M, Ganji DD (2013) Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol 246:327–336CrossRef Sheikholeslami M, Hatami M, Ganji DD (2013) Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol 246:327–336CrossRef
Zurück zum Zitat Thirupathi T, Bég OA, Kadir A (2017) Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. J Mol Liq 232(2017):159–173 Thirupathi T, Bég OA, Kadir A (2017) Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. J Mol Liq 232(2017):159–173
Zurück zum Zitat Vleggaar J (1977) Laminar boundary layer behavior on continuous accelerating. Surf Chem Eng Sci 32:1517–1525CrossRef Vleggaar J (1977) Laminar boundary layer behavior on continuous accelerating. Surf Chem Eng Sci 32:1517–1525CrossRef
Zurück zum Zitat Weidman TPD, Kubitschek DG, Davis AMJ (2006) The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci 44:730–737CrossRefMATH Weidman TPD, Kubitschek DG, Davis AMJ (2006) The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int J Eng Sci 44:730–737CrossRefMATH
Zurück zum Zitat Xu H, Pop I, You XC (2013) Flow and heat transfer in a nano-liquid film over an unsteady stretching surface. Int J Heat Mass Transf 60:646–652CrossRef Xu H, Pop I, You XC (2013) Flow and heat transfer in a nano-liquid film over an unsteady stretching surface. Int J Heat Mass Transf 60:646–652CrossRef
Metadaten
Titel
Two dimensional boundary layer flow with heat and mass transfer of magneto hydrodynamic non-Newtonian nanofluid through porous medium over a semi-infinite moving plate
verfasst von
N. T. Eldabe
M. E. Gabr
S. A. Zaher
Publikationsdatum
23.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3717-5

Weitere Artikel der Ausgabe 7/2018

Microsystem Technologies 7/2018 Zur Ausgabe

Neuer Inhalt