Skip to main content
Erschienen in: Microsystem Technologies 7/2018

07.02.2018 | Review Paper

MEMS based energy harvesting for the Internet of Things: a survey

verfasst von: Hongwen Sun, Minqi Yin, Wangtong Wei, Jiacheng Li, Haibin Wang, Xin Jin

Erschienen in: Microsystem Technologies | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Internet of Things (IoT) can manage a large number of smart wireless devices and form a networking infrastructure connected to the Internet. Traditional batteries in IoT produce environmental concerns and have limited operational life. Harvesting and converting ambient environmental energy is an effective and important approach for sustainable green power used in wireless and portable devices in IoT. This contribution reviews the state-of-the-art development of different energy harvesting sources including mechanical, light/solar, wind, sound, RF, biomechanical and pyroelectric energy. Power density generated from ambient source ranges widely from 0.001 μW/cm2 (RF WiFi) to 100 mW/cm2 (outdoor solar). Depends on application areas and working principles, typical power consumptions of IoT sensor nodes are in the order of mW (1–750 mW) in active mode and μW (0–60 μW) in sleep mode (Mathna et al. in Talanta 75:613–623, 2008; Magno et al. in IEEE Trans Ind Electron 61:1871–1881, 2014; Baranov et al. in Sens Actuators A 233:279–289, 2015; Somov et al. in Procedia Eng 87:520–523, 2014; Spirjakin et al. in Sens Actuators A 247:247–253, 2016; Samson et al. in Sens Actuators A 172:240–244, 2011). Therefore, efficient energy storage and management strategies are important for IoT development. These parts are discussed in order to provide the sustainable power. MEMS based energy harvesting devices may be widely employed in various areas, such as military monitoring, remote weather station, bluetooth headsets, and environment detection. This review focuses on the low power and self powered IoT applications: sensors, wearables, and RF-MEMS. With the advance of nanofabrication techniques, IoT devices will become smaller and enter into the era of Internet of Nano-Things.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad W, Hasan O, Pervez U, Qadir J (2017) Reliability modeling and analysis of communication networks. J Netw Comput Appl 78:191–215 Ahmad W, Hasan O, Pervez U, Qadir J (2017) Reliability modeling and analysis of communication networks. J Netw Comput Appl 78:191–215
Zurück zum Zitat Ahmed R, Mir F, and Banerjee S (2017) A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater Struct 26:085031 Ahmed R, Mir F, and Banerjee S (2017) A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater Struct 26:085031
Zurück zum Zitat Akhtar F, Rehmani MH (2015) Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew Sustain Energy Rev 45:769–784 Akhtar F, Rehmani MH (2015) Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review. Renew Sustain Energy Rev 45:769–784
Zurück zum Zitat Alippi C, Camplani R, Galperti C, Roveri M (2011) A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring. IEEE Sens 11:45–55 Alippi C, Camplani R, Galperti C, Roveri M (2011) A robust, adaptive, solar-powered WSN framework for aquatic environmental monitoring. IEEE Sens 11:45–55
Zurück zum Zitat Allane D, Duroc Y, Vera GA, Touhami R, Tedjini S (2017) On energy harvesting for augmented tags. C R Phys 18:86–97 Allane D, Duroc Y, Vera GA, Touhami R, Tedjini S (2017) On energy harvesting for augmented tags. C R Phys 18:86–97
Zurück zum Zitat Amin EM, Karmakar NC, Jensen BW (2016) Fully printable chipless RFID multi-parameter sensor. Sens Actuators A 248:223–232 Amin EM, Karmakar NC, Jensen BW (2016) Fully printable chipless RFID multi-parameter sensor. Sens Actuators A 248:223–232
Zurück zum Zitat Andò B, Baglio S, Bulsara AR, Marletta V (2014) A bistable buckled beam based approach for vibrational energy harvesting. Sens Actuators A 211:153–161 Andò B, Baglio S, Bulsara AR, Marletta V (2014) A bistable buckled beam based approach for vibrational energy harvesting. Sens Actuators A 211:153–161
Zurück zum Zitat Andosca R, McDonald TG, Genova V, Rosenberg S, Keating J, Benedixen C, Wu J (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87 Andosca R, McDonald TG, Genova V, Rosenberg S, Keating J, Benedixen C, Wu J (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87
Zurück zum Zitat Ashton K (2009) That “Internet of Things” thing. RFID J 22:97–114 Ashton K (2009) That “Internet of Things” thing. RFID J 22:97–114
Zurück zum Zitat Azevedo JAR, Santos FES (2012) Energy harvesting from wind and water for autonomous wireless sensor nodes. IET Circuits Devices Syst 6(6):413–420MathSciNet Azevedo JAR, Santos FES (2012) Energy harvesting from wind and water for autonomous wireless sensor nodes. IET Circuits Devices Syst 6(6):413–420MathSciNet
Zurück zum Zitat Balpande SS, Pande RS, Patrikar RM (2016) Design and low cost fabrication of green vibration energy harvester. Sens Actuators A 251:134–141 Balpande SS, Pande RS, Patrikar RM (2016) Design and low cost fabrication of green vibration energy harvester. Sens Actuators A 251:134–141
Zurück zum Zitat Baranov A, Spirjakin D, Akbari S, Somov A (2015) Optimization of power consumption for gas sensor nodes: a survey. Sens Actuators A 233:279–289 Baranov A, Spirjakin D, Akbari S, Somov A (2015) Optimization of power consumption for gas sensor nodes: a survey. Sens Actuators A 233:279–289
Zurück zum Zitat Baranov A, Spirjakin D, Akbari S, Somov A, Passerone R (2016) POCO: ‘Perpetual’ operation of CO wireless sensor node with hybrid power supply. Sens Actuators A 238:112–121 Baranov A, Spirjakin D, Akbari S, Somov A, Passerone R (2016) POCO: ‘Perpetual’ operation of CO wireless sensor node with hybrid power supply. Sens Actuators A 238:112–121
Zurück zum Zitat Botteron C, Briand D, Mishra B, Tasselli G, Janphuang P, Haug F-J, Skrivervik A, Lockhart R, Robert C, de Rooij NF, Farine P-A (2016) A low-cost UWBsensor node powered by a piezoelectric harvester or solar cells. Sens Actuators A Phys 239:127–136 Botteron C, Briand D, Mishra B, Tasselli G, Janphuang P, Haug F-J, Skrivervik A, Lockhart R, Robert C, de Rooij NF, Farine P-A (2016) A low-cost UWBsensor node powered by a piezoelectric harvester or solar cells. Sens Actuators A Phys 239:127–136
Zurück zum Zitat Carlson E, Strunz K, Otis B (2009) 20 mV input boost converter for thermoelectric energy harvesting. In: Proceedings of the IEEE symposium VLSI circuits, June 2009, pp 162–163 Carlson E, Strunz K, Otis B (2009) 20 mV input boost converter for thermoelectric energy harvesting. In: Proceedings of the IEEE symposium VLSI circuits, June 2009, pp 162–163
Zurück zum Zitat Carlson EJ, Strunz K, Otis BP (2010) A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Solid State Circuits 45:741–750 Carlson EJ, Strunz K, Otis BP (2010) A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Solid State Circuits 45:741–750
Zurück zum Zitat Cha S, Kim SM, Kim H, Ku J, Sohn JI, Park YJ, Song BG, Jung MH, Lee EK, Choi BL (2011) Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett 11:5142–5147 Cha S, Kim SM, Kim H, Ku J, Sohn JI, Park YJ, Song BG, Jung MH, Lee EK, Choi BL (2011) Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett 11:5142–5147
Zurück zum Zitat Chen G, Fojtik M, Kim D, Fick D, Park J, Seok M, Chen M-T, Foo Z, Sylvester D, Blaauw D (2010) A millimeter-scale nearly-perpetual sensor system with stacked battery and solar cells. In: Proceedings of the IEEE international solid-state circuits conference, February 2010, pp 288–289 Chen G, Fojtik M, Kim D, Fick D, Park J, Seok M, Chen M-T, Foo Z, Sylvester D, Blaauw D (2010) A millimeter-scale nearly-perpetual sensor system with stacked battery and solar cells. In: Proceedings of the IEEE international solid-state circuits conference, February 2010, pp 288–289
Zurück zum Zitat Chen J, Zhu G, Yang W, Jing Q, Bai P, Yang Y, Hou TC, Wang ZL (2013) Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv Mater 25:6094–6099 Chen J, Zhu G, Yang W, Jing Q, Bai P, Yang Y, Hou TC, Wang ZL (2013) Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv Mater 25:6094–6099
Zurück zum Zitat Chen N, Jung HJ, Jabbar H, Sung TH, Wei T (2017) A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit. Sens Actuators A 254:134–144 Chen N, Jung HJ, Jabbar H, Sung TH, Wei T (2017) A piezoelectric impact-induced vibration cantilever energy harvester from speed bump with a low-power power management circuit. Sens Actuators A 254:134–144
Zurück zum Zitat Collado A, Georgiadis A (2013) Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Trans Circ Syst I 60:2225–2234 Collado A, Georgiadis A (2013) Conformal hybrid solar and electromagnetic (EM) energy harvesting rectenna. IEEE Trans Circ Syst I 60:2225–2234
Zurück zum Zitat Cui N, Gu L, Liu J, Bai S, Qiu J, Fu J, Kou X, Liu H, Qin Y, Wang ZL (2015) High performance sound driven triboelectric nanogenerator for harvesting noise energy. Nano Energy 15:321–328 Cui N, Gu L, Liu J, Bai S, Qiu J, Fu J, Kou X, Liu H, Qin Y, Wang ZL (2015) High performance sound driven triboelectric nanogenerator for harvesting noise energy. Nano Energy 15:321–328
Zurück zum Zitat Du S, Jia Y, Zhao C, Chen S-T, Seshia AA (2017) Real-world evaluation of a self-startup SSHI rectifier for piezoelectric vibration energy harvesting. Sens Actuators A 264:180–187 Du S, Jia Y, Zhao C, Chen S-T, Seshia AA (2017) Real-world evaluation of a self-startup SSHI rectifier for piezoelectric vibration energy harvesting. Sens Actuators A 264:180–187
Zurück zum Zitat Eltaliawy A, Mostafa H, Ismail Y (2015) Micro-scale variation-tolerant exponential tracking energy harvesting system for wireless sensor networks. Microelectron J 46:221–230 Eltaliawy A, Mostafa H, Ismail Y (2015) Micro-scale variation-tolerant exponential tracking energy harvesting system for wireless sensor networks. Microelectron J 46:221–230
Zurück zum Zitat Esu OO, Lloyd SD, Flint JA, Watson SJ (2016) Feasibility of a fully autonomous wireless monitoring system for a wind turbine blade. Renew Energy 97:89–96 Esu OO, Lloyd SD, Flint JA, Watson SJ (2016) Feasibility of a fully autonomous wireless monitoring system for a wind turbine blade. Renew Energy 97:89–96
Zurück zum Zitat Fujita T, Renaud M, Goedbloed M, Nooijer C, Altena G, Elfrink R, Schaijk R (2014) Reliability improvement of vibration energy harvester with shock absorbing structures. Procedia Eng 87:1206–1209 Fujita T, Renaud M, Goedbloed M, Nooijer C, Altena G, Elfrink R, Schaijk R (2014) Reliability improvement of vibration energy harvester with shock absorbing structures. Procedia Eng 87:1206–1209
Zurück zum Zitat Gardner DS, Holzwarth CW III, Liu Y, Clendenning SB, Jin W, Moon B-K, Pint C, Chen Z, Hannah EC, Chen C, Wang C, Mäkilä E, Chen R, Aldridge T, Gustafson JL (2016) Integrated on-chip energy storage using passivated nanoporous-silicon electrochemical capacitors. Nano Energy 25:68–79 Gardner DS, Holzwarth CW III, Liu Y, Clendenning SB, Jin W, Moon B-K, Pint C, Chen Z, Hannah EC, Chen C, Wang C, Mäkilä E, Chen R, Aldridge T, Gustafson JL (2016) Integrated on-chip energy storage using passivated nanoporous-silicon electrochemical capacitors. Nano Energy 25:68–79
Zurück zum Zitat Gilbert JM, Balouchi F (2018) Comparison of energy harvesting systems for wireless sensor networks. Int J Autom Comput 05(4):334–347 Gilbert JM, Balouchi F (2018) Comparison of energy harvesting systems for wireless sensor networks. Int J Autom Comput 05(4):334–347
Zurück zum Zitat Gorlatova M, Kinget P, Kymissis I, Rubenstein D, Wang X, Zussman G (2010) Energy harvesting active networked tags (enhants) for ubiquitous object networking. IEEE Trans Wirel Commun 17(6):18–25 Gorlatova M, Kinget P, Kymissis I, Rubenstein D, Wang X, Zussman G (2010) Energy harvesting active networked tags (enhants) for ubiquitous object networking. IEEE Trans Wirel Commun 17(6):18–25
Zurück zum Zitat Goudar V, Ren Z, Brochu P, Potkonjak M, Pei Q (2014) Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control. IEEE Sens 14:2084–2091 Goudar V, Ren Z, Brochu P, Potkonjak M, Pei Q (2014) Optimizing the output of a human-powered energy harvesting system with miniaturization and integrated control. IEEE Sens 14:2084–2091
Zurück zum Zitat Gusarov B, Gusarova E, Viala B, Gimeno L, Boisseau S, Cugat O, Vandelle E, Louison B (2016) Thermal energy harvesting by piezoelectric PVDF polymer coupledwith shape memory alloy. Sens Actuators A Phys 243:175–181 Gusarov B, Gusarova E, Viala B, Gimeno L, Boisseau S, Cugat O, Vandelle E, Louison B (2016) Thermal energy harvesting by piezoelectric PVDF polymer coupledwith shape memory alloy. Sens Actuators A Phys 243:175–181
Zurück zum Zitat Han S et al (2017) Analysis of the frontier technology of agricultural IoT and its predication research. IOP Conf Ser Mater Sci Eng 231:012072 Han S et al (2017) Analysis of the frontier technology of agricultural IoT and its predication research. IOP Conf Ser Mater Sci Eng 231:012072
Zurück zum Zitat Hannan M, Mutashar S, Samad S, Hussain A (2014) Energy harvesting for the implantable biomedical devices: Issues and challenges. Biomed Eng Online 13:79 Hannan M, Mutashar S, Samad S, Hussain A (2014) Energy harvesting for the implantable biomedical devices: Issues and challenges. Biomed Eng Online 13:79
Zurück zum Zitat Haras M, Lacatena V, Morini F, Robillard J-F, Monfray S, Skotnicki T, Dubois E (2015) Thermoelectric energy conversion: how good can silicon be? Mater Lett 157:193–196 Haras M, Lacatena V, Morini F, Robillard J-F, Monfray S, Skotnicki T, Dubois E (2015) Thermoelectric energy conversion: how good can silicon be? Mater Lett 157:193–196
Zurück zum Zitat Harkouss F, Fardoun F, Biwole PH (2018) Multi-objective optimization methodology for net zero energy buildings. J Build Eng 16:57–71 Harkouss F, Fardoun F, Biwole PH (2018) Multi-objective optimization methodology for net zero energy buildings. J Build Eng 16:57–71
Zurück zum Zitat Hersent O, Boswarthick D, Elloumi O (2012) The Internet of Things: key applications and protocols, 2nd edn. Wiley, West Sussex, United Kingdom Hersent O, Boswarthick D, Elloumi O (2012) The Internet of Things: key applications and protocols, 2nd edn. Wiley, West Sussex, United Kingdom
Zurück zum Zitat Ibrahim R, Chung TD, Hassan SM, Bingi K, SKB SKB (2017) Solar energy harvester for industrial wireless sensor nodes. Procedia Comput Sci 105:111–118 Ibrahim R, Chung TD, Hassan SM, Bingi K, SKB SKB (2017) Solar energy harvester for industrial wireless sensor nodes. Procedia Comput Sci 105:111–118
Zurück zum Zitat Ilyas MA, Swingler J (2015) Piezoelectric energy harvesting from raindrop impacts. Energy 90:796–806 Ilyas MA, Swingler J (2015) Piezoelectric energy harvesting from raindrop impacts. Energy 90:796–806
Zurück zum Zitat Jara A, Alcolea A, Zamora M, Skarmeta A, Alsaedy M (2010) Drugs interaction checker based on IoT. In: Internet of Things, IOT, pp 1–8 Jara A, Alcolea A, Zamora M, Skarmeta A, Alsaedy M (2010) Drugs interaction checker based on IoT. In: Internet of Things, IOT, pp 1–8
Zurück zum Zitat Jara AJ, Zamora-Izquierdo MA, Skarmeta AF (2013) Interconnection framework for mhealth and remote monitoring based on the Internet of Things. IEEE J Sel Areas Commun 31(9):47–65 Jara AJ, Zamora-Izquierdo MA, Skarmeta AF (2013) Interconnection framework for mhealth and remote monitoring based on the Internet of Things. IEEE J Sel Areas Commun 31(9):47–65
Zurück zum Zitat Jayaweera HMPC, Muhtaroğlu A (2017) Design optimization of a fully integrated charge-pump with LC tank oscillator for ultra-low voltage energy harvesting. Microelectron J 59:33–39 Jayaweera HMPC, Muhtaroğlu A (2017) Design optimization of a fully integrated charge-pump with LC tank oscillator for ultra-low voltage energy harvesting. Microelectron J 59:33–39
Zurück zum Zitat Kim S, Vyas R, Bito J, Niotaki K, Collado A, Georgiadis A, Tentzeris MM (2014) Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc IEEE 102(11):1649–1666 Kim S, Vyas R, Bito J, Niotaki K, Collado A, Georgiadis A, Tentzeris MM (2014) Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc IEEE 102(11):1649–1666
Zurück zum Zitat Kim H-J, Yim E-C, Kim J-H, Kim S-J, Park J-Y, Oh I-K (2017) Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33:130–137 Kim H-J, Yim E-C, Kim J-H, Kim S-J, Park J-Y, Oh I-K (2017) Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33:130–137
Zurück zum Zitat Krykpayev B, Farooqui MF, Bilal RM, Vaseem M, Shamim A (2017) A wearable tracking device inkjet-printed on textile. Microelectron J 65:40–48 Krykpayev B, Farooqui MF, Bilal RM, Vaseem M, Shamim A (2017) A wearable tracking device inkjet-printed on textile. Microelectron J 65:40–48
Zurück zum Zitat Kumar B, Kim SW (2012) Nano Energy 1:342–355 Kumar B, Kim SW (2012) Nano Energy 1:342–355
Zurück zum Zitat Lechêne BP, Cowell M, Pierre A, Evans JW, Wright PK, Arias AC (2016) Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 26:631–640 Lechêne BP, Cowell M, Pierre A, Evans JW, Wright PK, Arias AC (2016) Organic solar cells and fully printed super-capacitors optimized for indoor light energy harvesting. Nano Energy 26:631–640
Zurück zum Zitat Lee SH, Jeong CK, Hwang G-T, Lee KJ (2014) Self-powered flexible inorganic electronic system. Nano Energy 14:111–125 Lee SH, Jeong CK, Hwang G-T, Lee KJ (2014) Self-powered flexible inorganic electronic system. Nano Energy 14:111–125
Zurück zum Zitat Lee J, Choi N-J, Lee H-K, Kim J, Lim SY, Kwon JY, Lee SM, Moon SE, Jong JJ, Yoo DJ (2017a) Low power consumption solid electrochemical-type micro CO2 gas sensor. Sens Actuators B 248:957–960 Lee J, Choi N-J, Lee H-K, Kim J, Lim SY, Kwon JY, Lee SM, Moon SE, Jong JJ, Yoo DJ (2017a) Low power consumption solid electrochemical-type micro CO2 gas sensor. Sens Actuators B 248:957–960
Zurück zum Zitat Lee SE, Choi M, Kim S (2017b) How and what to study about IoT: research trends and future directions from the perspective of social science. Telecommun Policy 41:1056–1067 Lee SE, Choi M, Kim S (2017b) How and what to study about IoT: research trends and future directions from the perspective of social science. Telecommun Policy 41:1056–1067
Zurück zum Zitat Li S, Crovetto A, Peng Z, Zhang A, Hansen O, Wang M, Li X, Wang F (2016) Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency. Sens Actuators A 247:547–554 Li S, Crovetto A, Peng Z, Zhang A, Hansen O, Wang M, Li X, Wang F (2016) Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency. Sens Actuators A 247:547–554
Zurück zum Zitat Lin SC, Lee BS, Wu WJ, Lee CK (2009) Multi-cantilever piezoelectric MEMS generator in energy harvesting. IEEE Int Ultrason Symp Proc 75:5–758 Lin SC, Lee BS, Wu WJ, Lee CK (2009) Multi-cantilever piezoelectric MEMS generator in energy harvesting. IEEE Int Ultrason Symp Proc 75:5–758
Zurück zum Zitat Lin L, Xie YN, Wang SH, Wu WZ, Niu SM, Wen XN, Wang ZL (2013) Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano 7:8266–8274 Lin L, Xie YN, Wang SH, Wu WZ, Niu SM, Wen XN, Wang ZL (2013) Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano 7:8266–8274
Zurück zum Zitat Lu W, Jing G, Bian X, Yu H, Cui T (2016) Micro catalytic methane sensors based on 3D quartz structures with cone-shaped cavities etched by high-resolution abrasive sand blasting. Sens Actuators A 242:9–17 Lu W, Jing G, Bian X, Yu H, Cui T (2016) Micro catalytic methane sensors based on 3D quartz structures with cone-shaped cavities etched by high-resolution abrasive sand blasting. Sens Actuators A 242:9–17
Zurück zum Zitat Machado M, Sawan M (2014) 10 mV: 1 V step-up converter for energy harvesting applications. In: Proceedings of the 27th symposium on integrated circuits and systems design, vol 25, pp 3–7 Machado M, Sawan M (2014) 10 mV: 1 V step-up converter for energy harvesting applications. In: Proceedings of the 27th symposium on integrated circuits and systems design, vol 25, pp 3–7
Zurück zum Zitat Magno M, Boyle D, Brunelli D, O’Flynn B, Popovic E, Benini L (2014) Extended wireless monitoring through intelligent hybrid energy supply. IEEE Trans Ind Electron 61:1871–1881 Magno M, Boyle D, Brunelli D, O’Flynn B, Popovic E, Benini L (2014) Extended wireless monitoring through intelligent hybrid energy supply. IEEE Trans Ind Electron 61:1871–1881
Zurück zum Zitat Magno M, Brunelli D, Sigrist L, Andri R, Cavigelli L, Gomez A, Benini L (2016) InfiniTime: multi-sensor wearable bracelet with human body harvesting. Sustain Comput: Inform Syst 11:38–49 Magno M, Brunelli D, Sigrist L, Andri R, Cavigelli L, Gomez A, Benini L (2016) InfiniTime: multi-sensor wearable bracelet with human body harvesting. Sustain Comput: Inform Syst 11:38–49
Zurück zum Zitat Mathna C, Donnell TO, Martinez-Catala RV, Rohan J, Flynn BO (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75:613–623 Mathna C, Donnell TO, Martinez-Catala RV, Rohan J, Flynn BO (2008) Energy scavenging for long-term deployable wireless sensor networks. Talanta 75:613–623
Zurück zum Zitat Medesi AJ, Hagedorn F, Schepperle M, Megnin C, Hanemann T (2016) The co-casting process: a new manufacturing process for ceramic multilayer devices. Sen Actuators A 251:266–275 Medesi AJ, Hagedorn F, Schepperle M, Megnin C, Hanemann T (2016) The co-casting process: a new manufacturing process for ceramic multilayer devices. Sen Actuators A 251:266–275
Zurück zum Zitat Mehajabin N, Razzaque MA, Hassan MM, Almogren A, Alamri A (2016) Energy-sustainable relay node deployment in wireless sensor networks. Comput Netw 104:108–121 Mehajabin N, Razzaque MA, Hassan MM, Almogren A, Alamri A (2016) Energy-sustainable relay node deployment in wireless sensor networks. Comput Netw 104:108–121
Zurück zum Zitat Mishra B, Botteron C, Farine PA (2011) A 120 mV startup circuit based on charge pump for energy harvesting circuits. IEICE Electron Express 8:830–834 Mishra B, Botteron C, Farine PA (2011) A 120 mV startup circuit based on charge pump for energy harvesting circuits. IEICE Electron Express 8:830–834
Zurück zum Zitat Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486 Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96(9):1457–1486
Zurück zum Zitat Mo H, Sansavini G (2018) Real-time coordination of distributed energy resources for frequency control in microgrids with unreliable communication. Electr Power Energy Syst 96:86–105 Mo H, Sansavini G (2018) Real-time coordination of distributed energy resources for frequency control in microgrids with unreliable communication. Electr Power Energy Syst 96:86–105
Zurück zum Zitat Mo H-D, Li Y-F, Zio E (2016) A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks. Appl Energy 183:805–822 Mo H-D, Li Y-F, Zio E (2016) A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks. Appl Energy 183:805–822
Zurück zum Zitat Monti G, Congedo F, Arcuti P, Tarricone L (2014) Resonant energy scavenger for sensor powering by spurious emissions from compact fluorescent lamps. IEEE Sens 14:2347–2354 Monti G, Congedo F, Arcuti P, Tarricone L (2014) Resonant energy scavenger for sensor powering by spurious emissions from compact fluorescent lamps. IEEE Sens 14:2347–2354
Zurück zum Zitat Mulatu MA (2017) Energy cooperation in communication of energy harvesting tags. Int J Electron Commun (AEÜ) 71:145–151 Mulatu MA (2017) Energy cooperation in communication of energy harvesting tags. Int J Electron Commun (AEÜ) 71:145–151
Zurück zum Zitat Nasir AA, Zhou X, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wirel Commun 12(7):3622–3636 Nasir AA, Zhou X, Durrani S, Kennedy RA (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wirel Commun 12(7):3622–3636
Zurück zum Zitat Niotaki K, Collado A, Georgiadis A, Sangkil K, Tentzeris MM (2014) Solar/electromagnetic energy harvesting and wireless power transmission. Proc IEEE 102:1712–1722 Niotaki K, Collado A, Georgiadis A, Sangkil K, Tentzeris MM (2014) Solar/electromagnetic energy harvesting and wireless power transmission. Proc IEEE 102:1712–1722
Zurück zum Zitat Orrego S, Shoele K, Ruas A, Doran K, Caggiano B, Mittal R, Kang SH (2017) Harvesting ambient wind energy with an inverted piezoelectric flag. Appl Energy 194:212–222 Orrego S, Shoele K, Ruas A, Doran K, Caggiano B, Mittal R, Kang SH (2017) Harvesting ambient wind energy with an inverted piezoelectric flag. Appl Energy 194:212–222
Zurück zum Zitat Otsuji T, Boubanga Tombet S, Satou A, Ryzhii M, Ryzhii V (2013) Terahertz-wave generation using graphene—toward new types of terahertz lasers. IEEE J Sel Top Quantum Electron 19(1):8400209 Otsuji T, Boubanga Tombet S, Satou A, Ryzhii M, Ryzhii V (2013) Terahertz-wave generation using graphene—toward new types of terahertz lasers. IEEE J Sel Top Quantum Electron 19(1):8400209
Zurück zum Zitat Palattella M, Accettura N, Vilajosana X, Watteyne T, Grieco L, Boggia G, Dohler M (2013) Standardized protocol stack for the Internet of (important) Things. IEEE Commun Surv Tutor 15(3):1389–1406 Palattella M, Accettura N, Vilajosana X, Watteyne T, Grieco L, Boggia G, Dohler M (2013) Standardized protocol stack for the Internet of (important) Things. IEEE Commun Surv Tutor 15(3):1389–1406
Zurück zum Zitat Pancharoen K, Zhu D, Beeb SP (2017) Temperature dependence of a magnetically levitated electromagnetic. Sens Actuators A 256:1–11 Pancharoen K, Zhu D, Beeb SP (2017) Temperature dependence of a magnetically levitated electromagnetic. Sens Actuators A 256:1–11
Zurück zum Zitat Park C, Chou PH (2006) Ambimax: autonomous energy harvesting platform for multi-supply wireless sensor nodes. In: Heinzelman W, Hou T (eds) IEEE communications society on sensor and adhoc communications and networks. IEEE, Reston, pp 168–177 Park C, Chou PH (2006) Ambimax: autonomous energy harvesting platform for multi-supply wireless sensor nodes. In: Heinzelman W, Hou T (eds) IEEE communications society on sensor and adhoc communications and networks. IEEE, Reston, pp 168–177
Zurück zum Zitat Peng WW (2007) Fundamentals of turbomachinery. Wiley, New Jersey Peng WW (2007) Fundamentals of turbomachinery. Wiley, New Jersey
Zurück zum Zitat Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633/1–1633/10 Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA (2013) High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 4:1633/1–1633/10
Zurück zum Zitat Pillatsch P, Yeatman EM, Holmes AS, Wright PK (2016) Wireless power transfer system for a human motion energy harvester. Sens Actuators A 244:77–85 Pillatsch P, Yeatman EM, Holmes AS, Wright PK (2016) Wireless power transfer system for a human motion energy harvester. Sens Actuators A 244:77–85
Zurück zum Zitat Piro G, Boggia G, Grieco LA (2015) On the design of an energy-harvesting protocol stack for body area nano-NETworks. Nano Commun Netw 6:74–84 Piro G, Boggia G, Grieco LA (2015) On the design of an energy-harvesting protocol stack for body area nano-NETworks. Nano Commun Netw 6:74–84
Zurück zum Zitat Premanode B, Toumazou C (2007) A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens Actuators B Chem 120:732–735 Premanode B, Toumazou C (2007) A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis. Sens Actuators B Chem 120:732–735
Zurück zum Zitat Rahimi A, Zorlu Ö, Muhtaroglu A, Külah H (2011) A compact electromagnetic vibration harvesting system with high performance interface electronics. Procedia Eng 25:215–218 Rahimi A, Zorlu Ö, Muhtaroglu A, Külah H (2011) A compact electromagnetic vibration harvesting system with high performance interface electronics. Procedia Eng 25:215–218
Zurück zum Zitat Ramadass YK, Chandrakasan AP (2008) Minimum energy tracking loop with embedded DC–DC converter enabling ultra-low-voltage operation down to 250 mV in 65 nm CMOS. IEEE J Solid State Circuits 43(1):256–265 Ramadass YK, Chandrakasan AP (2008) Minimum energy tracking loop with embedded DC–DC converter enabling ultra-low-voltage operation down to 250 mV in 65 nm CMOS. IEEE J Solid State Circuits 43(1):256–265
Zurück zum Zitat Renner C, Turau V, Römer K (2014) Online energy assessment with supercapacitors and energy harvesters. Sustain Comput Inform Syst 4:10–23 Renner C, Turau V, Römer K (2014) Online energy assessment with supercapacitors and energy harvesters. Sustain Comput Inform Syst 4:10–23
Zurück zum Zitat Rincón F, Paselli M, Piorno JR, Zhao Q, Sánchez-Élez M, Atienza D, Penders J, De Micheli G (2008) OS-based sensor node platform and energy estimation model for health-care wireless sensor networks. In: 2008 design, automation and test in Europe, pp 1027–1032. https://doi.org/10.1109/date.2008.4484816 Rincón F, Paselli M, Piorno JR, Zhao Q, Sánchez-Élez M, Atienza D, Penders J, De Micheli G (2008) OS-based sensor node platform and energy estimation model for health-care wireless sensor networks. In: 2008 design, automation and test in Europe, pp 1027–1032. https://​doi.​org/​10.​1109/​date.​2008.​4484816
Zurück zum Zitat Ronen S (2014) Introduction to this special section: Sensor technology and nanotechnology. Lead Edge 33:1222 Ronen S (2014) Introduction to this special section: Sensor technology and nanotechnology. Lead Edge 33:1222
Zurück zum Zitat Rossi FD, Pontecorvo T, Brown TM (2015) Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl Energy 156:413–422 Rossi FD, Pontecorvo T, Brown TM (2015) Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting. Appl Energy 156:413–422
Zurück zum Zitat Russo J, Ray W II, Litz MS (2017) Low light illumination study on commercially available homojunction photovoltaic cells. Appl Energy 191:10–21 Russo J, Ray W II, Litz MS (2017) Low light illumination study on commercially available homojunction photovoltaic cells. Appl Energy 191:10–21
Zurück zum Zitat Samson D, Kluge M, Becker Th, Schmid U (2011) Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens Actuators A 172:240–244 Samson D, Kluge M, Becker Th, Schmid U (2011) Wireless sensor node powered by aircraft specific thermoelectric energy harvesting. Sens Actuators A 172:240–244
Zurück zum Zitat Sardini E, Serpelloni M (2011) Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability. Trans Instrum Meas 60:1838–1844 Sardini E, Serpelloni M (2011) Self-powered wireless sensor for air temperature and velocity measurements with energy harvesting capability. Trans Instrum Meas 60:1838–1844
Zurück zum Zitat Sebald G, Guyomar D, Agbossou A (2009) On thermoelectric and pyroelectric energy harvesting. Smart Mater Struct 18:1–7 Sebald G, Guyomar D, Agbossou A (2009) On thermoelectric and pyroelectric energy harvesting. Smart Mater Struct 18:1–7
Zurück zum Zitat Shah ST, Choi KW, Hasan SF, Chung MY (2016) Throughput analysis of two-way relay networks with wireless energy harvesting capabilities. Ad Hoc Netw 53:123–131 Shah ST, Choi KW, Hasan SF, Chung MY (2016) Throughput analysis of two-way relay networks with wireless energy harvesting capabilities. Ad Hoc Netw 53:123–131
Zurück zum Zitat Shahrjerdi D, Bedell SW, Khakifirooz A, Cheng K (2016) Mechanically flexible nanoscale silicon integrated circuits powered by photovoltaic energy harvesters. Solid State Electron 117:117–122 Shahrjerdi D, Bedell SW, Khakifirooz A, Cheng K (2016) Mechanically flexible nanoscale silicon integrated circuits powered by photovoltaic energy harvesters. Solid State Electron 117:117–122
Zurück zum Zitat Shen S, Henry A, Tong J, Zheng R, Chen G (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5:251–255 Shen S, Henry A, Tong J, Zheng R, Chen G (2010) Polyethylene nanofibres with very high thermal conductivities. Nat Nanotechnol 5:251–255
Zurück zum Zitat Shin D, Seong T, Choi J, Choi W (2017) Self-sustaining water-motion sensor platform for continuous monitoring of frequency and amplitude dynamics. Nano Energy 35:179–188 Shin D, Seong T, Choi J, Choi W (2017) Self-sustaining water-motion sensor platform for continuous monitoring of frequency and amplitude dynamics. Nano Energy 35:179–188
Zurück zum Zitat Shirehjini A, Yassine A, Shirmohammadi S (2012) Equipment location in hospitals using RFID-based positioning system. IEEE Trans Inf Technol Biomed 16(6):1058–1069 Shirehjini A, Yassine A, Shirmohammadi S (2012) Equipment location in hospitals using RFID-based positioning system. IEEE Trans Inf Technol Biomed 16(6):1058–1069
Zurück zum Zitat Siddiqui S, Kim D-I, Duy LT, Nguyen MT, Muhammad S, Yoon W-S, Lee N-E (2015) High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15:177–185 Siddiqui S, Kim D-I, Duy LT, Nguyen MT, Muhammad S, Yoon W-S, Lee N-E (2015) High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy 15:177–185
Zurück zum Zitat Somov A, Lebedev V, Baranov A, Laukhina E, Laukhin V, Passerone R, Rovira C, Veciana J (2014) Wireless sensor node with ultrasensitive film sensors for emergency applications. Procedia Eng 87:520–523 Somov A, Lebedev V, Baranov A, Laukhina E, Laukhin V, Passerone R, Rovira C, Veciana J (2014) Wireless sensor node with ultrasensitive film sensors for emergency applications. Procedia Eng 87:520–523
Zurück zum Zitat Song Y, Yang CH, Hong SK, Hwang SJ, Kim JH, Choi JY, Ryu SK, Sung TH (2016) Road energy harvester designed as a macro-power source using the piezoelectric effect. Int J Hydrog Energy 41(29):12563–12568 Song Y, Yang CH, Hong SK, Hwang SJ, Kim JH, Choi JY, Ryu SK, Sung TH (2016) Road energy harvester designed as a macro-power source using the piezoelectric effect. Int J Hydrog Energy 41(29):12563–12568
Zurück zum Zitat Spirjakin D, Baranov AM, Somov A, Sleptsov V (2016) Investigation of heating profiles and optimization of powerconsumption of gas sensors for wireless sensor networks. Sens Actuators A 247:247–253 Spirjakin D, Baranov AM, Somov A, Sleptsov V (2016) Investigation of heating profiles and optimization of powerconsumption of gas sensors for wireless sensor networks. Sens Actuators A 247:247–253
Zurück zum Zitat Steinberg MD, Tkalcec B, Steinberg IM (2016) Towards a passive contactless sensor for monitoring resistivity in porous materials. Sens Actuators B 234:294–299 Steinberg MD, Tkalcec B, Steinberg IM (2016) Towards a passive contactless sensor for monitoring resistivity in porous materials. Sens Actuators B 234:294–299
Zurück zum Zitat Sudou M, Takao H, Sawada K, Ishida M (2008) A novel RF induced power supply system for monolithically integrated ubiquitous micro sensor nodes. Sens Actuators A 145–146:343–348 Sudou M, Takao H, Sawada K, Ishida M (2008) A novel RF induced power supply system for monolithically integrated ubiquitous micro sensor nodes. Sens Actuators A 145–146:343–348
Zurück zum Zitat Szydło T, Brzoza-Woch R (2015) Predictive power consumption adaptation for future generation embedded devices powered by energy harvesting sources. Microprocess Microsyst 39:250–258 Szydło T, Brzoza-Woch R (2015) Predictive power consumption adaptation for future generation embedded devices powered by energy harvesting sources. Microprocess Microsyst 39:250–258
Zurück zum Zitat Takhedmit H, Saddi Z, Karami A, Basset P, Cirio L (2017) Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up. C R Phys 18:98–106 Takhedmit H, Saddi Z, Karami A, Basset P, Cirio L (2017) Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up. C R Phys 18:98–106
Zurück zum Zitat Tamagnone M, Gomez-Diaz JS, Mosig JR, Perruisseau-Carrier J (2012) Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl Phys Lett 101(21):214102 Tamagnone M, Gomez-Diaz JS, Mosig JR, Perruisseau-Carrier J (2012) Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Appl Phys Lett 101(21):214102
Zurück zum Zitat Thielen M, Sigrist L, Magno M, Hierold C, Benini L (2017) Human body heat for powering wearable devices: from thermal energy to application. Energy Convers Manag 131:44–54 Thielen M, Sigrist L, Magno M, Hierold C, Benini L (2017) Human body heat for powering wearable devices: from thermal energy to application. Energy Convers Manag 131:44–54
Zurück zum Zitat Toprak A, Tigli O (2018) Micron scale energy harvesters using multiple piezoelectric polymer layers. Sens Actuators A 269:412–418 Toprak A, Tigli O (2018) Micron scale energy harvesters using multiple piezoelectric polymer layers. Sens Actuators A 269:412–418
Zurück zum Zitat Tunc C, Akar N (2017) Markov fluid queue model of an energy harvesting IoT device with adaptive sensing. Perform Eval 111:1–16 Tunc C, Akar N (2017) Markov fluid queue model of an energy harvesting IoT device with adaptive sensing. Perform Eval 111:1–16
Zurück zum Zitat Tweneboah-Koduah S, Skouby KE, Tadayoni R (2017) Cyber security threats to IoT applications and service domains. Wirel Pers Commun 95:169–185 Tweneboah-Koduah S, Skouby KE, Tadayoni R (2017) Cyber security threats to IoT applications and service domains. Wirel Pers Commun 95:169–185
Zurück zum Zitat Upadrashta D, Yang Y (2016) Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications. Sens Actuators A 244:223–232 Upadrashta D, Yang Y (2016) Experimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applications. Sens Actuators A 244:223–232
Zurück zum Zitat Visser HJ, Reniers ACF, Theeuwes JAC (2008) Ambient RF energy scavenging: GSM and WLAN power density measurements. In: Proceedings of the 38th European microwave conference, Proceedings of the 38th European microwave conference, EuMC, pp 721–724 Visser HJ, Reniers ACF, Theeuwes JAC (2008) Ambient RF energy scavenging: GSM and WLAN power density measurements. In: Proceedings of the 38th European microwave conference, Proceedings of the 38th European microwave conference, EuMC, pp 721–724
Zurück zum Zitat Voicu GR, Enachescu M, Cotofana SD (2011) Towards “Zero-energy” using NEMFET-based power management for 3D hybrid stacked ICs. In: 2011 IEEE/ACM international symposium on nanoscale architectures, 978-1-4577-0995-1/11, pp 203–209 Voicu GR, Enachescu M, Cotofana SD (2011) Towards “Zero-energy” using NEMFET-based power management for 3D hybrid stacked ICs. In: 2011 IEEE/ACM international symposium on nanoscale architectures, 978-1-4577-0995-1/11, pp 203–209
Zurück zum Zitat Wang ZL (2010) Toward self-powered sensor networks. Nano Today 5:512–514 Wang ZL (2010) Toward self-powered sensor networks. Nano Today 5:512–514
Zurück zum Zitat Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557 Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557
Zurück zum Zitat Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20(2):74–82 Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20(2):74–82
Zurück zum Zitat Wang ZL, Song JH (2006) Effect of Mn doping on solvothermal synthesis of CdS nanowires. Science 312:242–246 Wang ZL, Song JH (2006) Effect of Mn doping on solvothermal synthesis of CdS nanowires. Science 312:242–246
Zurück zum Zitat Wang H, Wereszczak AA, Lin HT (2009) Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload. J Appl Phys 105(1):014112 Wang H, Wereszczak AA, Lin HT (2009) Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload. J Appl Phys 105(1):014112
Zurück zum Zitat Wang YR, Zheng JM, Ren GY, Zhang PH, Xu C (2011) A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater Struct 20:045009/1–045009/7 Wang YR, Zheng JM, Ren GY, Zhang PH, Xu C (2011) A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater Struct 20:045009/1–045009/7
Zurück zum Zitat Wang SH, Xie YN, Niu SM, Lin L, Liu C, Zhou YS, Wang ZL (2014) Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology theoretical understanding. Adv Mater 26:6720–6728 Wang SH, Xie YN, Niu SM, Lin L, Liu C, Zhou YS, Wang ZL (2014) Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology theoretical understanding. Adv Mater 26:6720–6728
Zurück zum Zitat Wang ZL, Chen J, Lin L (2015a) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8:2250–2282 Wang ZL, Chen J, Lin L (2015a) Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8:2250–2282
Zurück zum Zitat Wang S, Lin L, Wang ZL (2015b) Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11:436–462 Wang S, Lin L, Wang ZL (2015b) Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11:436–462
Zurück zum Zitat Wang J, Zhang H, Xie Y, Yan Z, Yuan Y, Huang L, Cui X, Gao M, Su Y, Yang W, Lin Y (2017a) Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing. Nano Energy 33:418–426 Wang J, Zhang H, Xie Y, Yan Z, Yuan Y, Huang L, Cui X, Gao M, Su Y, Yang W, Lin Y (2017a) Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing. Nano Energy 33:418–426
Zurück zum Zitat Wang Q, Zhang X, Bowen CR, Li M-Y, Ma J, Qiu S, Liu H, Jiang S (2017b) Effect of Zr/Ti ratio on microstructure and electrical properties of pyroelectric ceramics for energy harvesting applications. J Alloy Compd 710:869–874 Wang Q, Zhang X, Bowen CR, Li M-Y, Ma J, Qiu S, Liu H, Jiang S (2017b) Effect of Zr/Ti ratio on microstructure and electrical properties of pyroelectric ceramics for energy harvesting applications. J Alloy Compd 710:869–874
Zurück zum Zitat Wang G, Liu H, Qiu H, Ning K, Yang Y, Li X, Xu X, Lavanant-Jambert M, Petit-Watelot S, Lu Y, Ren T-L (2017c) MEMS-based fabrication of high-performance inductors with back hollow structure and ferromagnetic film. Microelectron Eng 168:5–9 Wang G, Liu H, Qiu H, Ning K, Yang Y, Li X, Xu X, Lavanant-Jambert M, Petit-Watelot S, Lu Y, Ren T-L (2017c) MEMS-based fabrication of high-performance inductors with back hollow structure and ferromagnetic film. Microelectron Eng 168:5–9
Zurück zum Zitat Wei C, Jing X (2017) Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Commun Nonlinear Sci Numer Simul 48:288–306MathSciNet Wei C, Jing X (2017) Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Commun Nonlinear Sci Numer Simul 48:288–306MathSciNet
Zurück zum Zitat Wilson RE, Lissaman PBS (1974) ‘Applied Aerodynamics of wind power machines’, Research Applied to National Needs, GI 41840, Oregon State University Wilson RE, Lissaman PBS (1974) ‘Applied Aerodynamics of wind power machines’, Research Applied to National Needs, GI 41840, Oregon State University
Zurück zum Zitat Xiao L, Qian JJ, Lian Z, Long Z, Tang X, Chen T, Du X, Cao L (2016) RF energy powered wireless temperature sensor for monitoring electrical equipment. Sens Actuators A 249:276–283 Xiao L, Qian JJ, Lian Z, Long Z, Tang X, Chen T, Du X, Cao L (2016) RF energy powered wireless temperature sensor for monitoring electrical equipment. Sens Actuators A 249:276–283
Zurück zum Zitat Yang W, Chen J, Zhu G, Wen X, Bai P, Su Y, Lin Y, Wang Z (2013) Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res 6:880–886 Yang W, Chen J, Zhu G, Wen X, Bai P, Su Y, Lin Y, Wang Z (2013) Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res 6:880–886
Zurück zum Zitat Yang J, Chen J, Liu Y, Yang W, Su Y, Wang ZL (2014) Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8:2649–2657 Yang J, Chen J, Liu Y, Yang W, Su Y, Wang ZL (2014) Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 8:2649–2657
Zurück zum Zitat Yu T, Zhang G, Yu Y, Zeng Y, Jiang S (2015) Pyroelectric energy harvesting devices based-on Pb[(Mn x Nb1−x)1/2(Mn x Sb1−x)1/2]y(Zr z Ti1−z)1−yO3 ceramics. Sens Actuators A 223:159–166 Yu T, Zhang G, Yu Y, Zeng Y, Jiang S (2015) Pyroelectric energy harvesting devices based-on Pb[(Mn x Nb1−x)1/2(Mn x Sb1−x)1/2]y(Zr z Ti1−z)1−yO3 ceramics. Sens Actuators A 223:159–166
Zurück zum Zitat Yuan MM, Cheng L, Xu Q, Wu WW, Bai S, Gu L, Wang Z, Lu J, Li HP, Qin Y, Jing T, Wang ZL (2014) Biocompatible nanogenerators through High piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for In-Vivo applications. Adv Mater 26:7432–7437 Yuan MM, Cheng L, Xu Q, Wu WW, Bai S, Gu L, Wang Z, Lu J, Li HP, Qin Y, Jing T, Wang ZL (2014) Biocompatible nanogenerators through High piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for In-Vivo applications. Adv Mater 26:7432–7437
Zurück zum Zitat Yuan M, Cao Z, Luo J, Zhang J, Chang C (2017) An efficient low-frequency acoustic energy harvester. Sens Actuators A 264:84–89 Yuan M, Cao Z, Luo J, Zhang J, Chang C (2017) An efficient low-frequency acoustic energy harvester. Sens Actuators A 264:84–89
Zurück zum Zitat Zhou X, Zhang R, Ho CK (2013) Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans Commun 61(11):4754–4767 Zhou X, Zhang R, Ho CK (2013) Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans Commun 61(11):4754–4767
Zurück zum Zitat Zhou Z, Qin W, Zhu P (2017) Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester. Energy 126:527–534 Zhou Z, Qin W, Zhu P (2017) Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester. Energy 126:527–534
Zurück zum Zitat Zhu G, Chen J, Zhang TJ, Jing QS, Wang ZL (2014) Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun 5:3426 Zhu G, Chen J, Zhang TJ, Jing QS, Wang ZL (2014) Radial-arrayed rotary electrification for high performance triboelectric generator. Nat Commun 5:3426
Zurück zum Zitat Zura I, Babic D, Steinberg MD, Steinberg IM (2014) Low-cost conductometric transducers for use in thin polymerfilm chemical sensors. Sens Actuators B 193:128–135 Zura I, Babic D, Steinberg MD, Steinberg IM (2014) Low-cost conductometric transducers for use in thin polymerfilm chemical sensors. Sens Actuators B 193:128–135
Metadaten
Titel
MEMS based energy harvesting for the Internet of Things: a survey
verfasst von
Hongwen Sun
Minqi Yin
Wangtong Wei
Jiacheng Li
Haibin Wang
Xin Jin
Publikationsdatum
07.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3763-z

Weitere Artikel der Ausgabe 7/2018

Microsystem Technologies 7/2018 Zur Ausgabe

Neuer Inhalt