Skip to main content
Erschienen in: Microsystem Technologies 7/2018

25.11.2017 | Technical Paper

Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity

Erschienen in: Microsystem Technologies | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A mathematical model of magneto electro-thermoelasticity has been constructed in the context of a new consideration of fractional Green-Naghdi heat conduction law without energy dissipation. The governing coupled equations are applied to a one-dimensional problem for a perfect conducting spherical cavity subjected to an arbitrary thermal shock in the presence of a uniform magnetic field. By means of the Laplace transform and numerical Laplace inversion, the problems are solved. The distributions of the considered temperature, stress and displacement are represented graphically. Some comparisons are shown in the figures to estimate the effects of the fractional order and relaxation time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aatef DH, Abbas IA (2016) Analytical solution of magnetothermoelastic interaction in a fiber-reinforced anisotropic material. Euro Phys J 31:424 Aatef DH, Abbas IA (2016) Analytical solution of magnetothermoelastic interaction in a fiber-reinforced anisotropic material. Euro Phys J 31:424
Zurück zum Zitat Abbas IA (2015) Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity. Appl Math Model 39:6196–6206MathSciNetCrossRef Abbas IA (2015) Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity. Appl Math Model 39:6196–6206MathSciNetCrossRef
Zurück zum Zitat Abbas IA, Kumar R (2016) 2D deformation in initially stressed thermoelastic half-space with voids. Steel Compos Struct 20:1103–1117CrossRef Abbas IA, Kumar R (2016) 2D deformation in initially stressed thermoelastic half-space with voids. Steel Compos Struct 20:1103–1117CrossRef
Zurück zum Zitat Abbas IA, Marin M (2017) Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating.”. Physica E 87:254–260CrossRef Abbas IA, Marin M (2017) Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating.”. Physica E 87:254–260CrossRef
Zurück zum Zitat Alzahrani FS, Abbas IA (2016) The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory. Steel Compos Struct Int J 22:369–386CrossRef Alzahrani FS, Abbas IA (2016) The effect of magnetic field on a thermoelastic fiber-reinforced material under GN-III theory. Steel Compos Struct Int J 22:369–386CrossRef
Zurück zum Zitat Caputo M (1974) Vibrations on an infinite viscoelastic layer with a dissipative memory. J Acous Soc Am 56:897–904CrossRefMATH Caputo M (1974) Vibrations on an infinite viscoelastic layer with a dissipative memory. J Acous Soc Am 56:897–904CrossRefMATH
Zurück zum Zitat Caputo M, Mainardi F (1971) Linear model of dissipation in an elastic solids. La Rivista del Nuovo Cimento 1:161–198CrossRef Caputo M, Mainardi F (1971) Linear model of dissipation in an elastic solids. La Rivista del Nuovo Cimento 1:161–198CrossRef
Zurück zum Zitat Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mechs Rev 51:705–729CrossRef Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mechs Rev 51:705–729CrossRef
Zurück zum Zitat Chandraskharaiah DS (1996) A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. J Elas 43:279–283MathSciNetCrossRef Chandraskharaiah DS (1996) A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation. J Elas 43:279–283MathSciNetCrossRef
Zurück zum Zitat Chirita S, Ciarletta M (2010) Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech Res Commun 37:271–275CrossRefMATH Chirita S, Ciarletta M (2010) Reciprocal and variational principles in linear thermoelasticity without energy dissipation. Mech Res Commun 37:271–275CrossRefMATH
Zurück zum Zitat Ciarletta MA (2009) Theory of micropolar thermoelasticity without energy dissipation. J Therm Stress 22:581–594MathSciNetCrossRef Ciarletta MA (2009) Theory of micropolar thermoelasticity without energy dissipation. J Therm Stress 22:581–594MathSciNetCrossRef
Zurück zum Zitat El-Karamany AS, Ezzat MA (2002) On the boundary integral formulation of thermo—viscoelasticity theory. Int J Eng Sci 40:1943–1956MathSciNetCrossRefMATH El-Karamany AS, Ezzat MA (2002) On the boundary integral formulation of thermo—viscoelasticity theory. Int J Eng Sci 40:1943–1956MathSciNetCrossRefMATH
Zurück zum Zitat El-Karamany AS, Ezzat MA (2011b) Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stress 34:264–284CrossRef El-Karamany AS, Ezzat MA (2011b) Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J Therm Stress 34:264–284CrossRef
Zurück zum Zitat El-Karamany AS, Ezzat MA (2016) On the phase-lag Green-Naghdi thermoelasticity theories. Appl Math Model 40:5643–5659MathSciNetCrossRef El-Karamany AS, Ezzat MA (2016) On the phase-lag Green-Naghdi thermoelasticity theories. Appl Math Model 40:5643–5659MathSciNetCrossRef
Zurück zum Zitat El-Karamany AS, Ezzat MA (2017) Fractional phase-lag Green-Naghdi thermoelasticity theories. J Therm Stress 40:1063–1078CrossRef El-Karamany AS, Ezzat MA (2017) Fractional phase-lag Green-Naghdi thermoelasticity theories. J Therm Stress 40:1063–1078CrossRef
Zurück zum Zitat Ezzat MA (1994) State space approach to unsteady two-dimensional free convection flow through a porous medium. Can J Phys 72:311–317CrossRef Ezzat MA (1994) State space approach to unsteady two-dimensional free convection flow through a porous medium. Can J Phys 72:311–317CrossRef
Zurück zum Zitat Ezzat MA (2006) The relaxation effects of the volume properties of electrically conducting viscoelastic material. J Mater Sci Eng B 130:11–23CrossRef Ezzat MA (2006) The relaxation effects of the volume properties of electrically conducting viscoelastic material. J Mater Sci Eng B 130:11–23CrossRef
Zurück zum Zitat Ezzat MA (2011) Thermoelectric MHD with modified Fourier’s law. Int J Therm Sci 50:449–455CrossRef Ezzat MA (2011) Thermoelectric MHD with modified Fourier’s law. Int J Therm Sci 50:449–455CrossRef
Zurück zum Zitat Ezzat MA (2012) State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transf 48:71–82CrossRef Ezzat MA (2012) State space approach to thermoelectric fluid with fractional order heat transfer. Heat Mass Transf 48:71–82CrossRef
Zurück zum Zitat Ezzat MA, El-Bary AA (2012) MHD Free convection flow with fractional heat conduction law. MHD 48:587–606 Ezzat MA, El-Bary AA (2012) MHD Free convection flow with fractional heat conduction law. MHD 48:587–606
Zurück zum Zitat Ezzat MA, El-Bary AA (2017a) Generalized fractional magneto-thermo-viscoelasticity. Micro Sys 23:1767–1777 Ezzat MA, El-Bary AA (2017a) Generalized fractional magneto-thermo-viscoelasticity. Micro Sys 23:1767–1777
Zurück zum Zitat Ezzat MA, El-Bary AA (2017b) Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Micro Sys 23:2447–2458 Ezzat MA, El-Bary AA (2017b) Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Micro Sys 23:2447–2458
Zurück zum Zitat Ezzat MA, El-Karamany AS (2002) The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J Therm Stress 25:507–522MathSciNetCrossRef Ezzat MA, El-Karamany AS (2002) The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J Therm Stress 25:507–522MathSciNetCrossRef
Zurück zum Zitat Ezzat MA, El-Karamany AS (2003) On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation. Can J Phys 81:823–833CrossRef Ezzat MA, El-Karamany AS (2003) On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation. Can J Phys 81:823–833CrossRef
Zurück zum Zitat Ezzat MA, El-Karamany AS (2011a) Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. ZAMP 62:937–952MathSciNetCrossRefMATH Ezzat MA, El-Karamany AS (2011a) Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. ZAMP 62:937–952MathSciNetCrossRefMATH
Zurück zum Zitat Ezzat MA, El-Karamany AS (2011b) Theory of fractional order in electro-thermoelasticity. Eur J Mech A/Solid 30:491–500CrossRefMATH Ezzat MA, El-Karamany AS (2011b) Theory of fractional order in electro-thermoelasticity. Eur J Mech A/Solid 30:491–500CrossRefMATH
Zurück zum Zitat Ezzat MA, Fayik M (2013) Fractional order theory of thermoelastic diffusion. J Therm Stress 34:851–872CrossRef Ezzat MA, Fayik M (2013) Fractional order theory of thermoelastic diffusion. J Therm Stress 34:851–872CrossRef
Zurück zum Zitat Ezzat MA, Zakaria M, Shaker O, Barakat F (1996) State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium. Acta Mech 119:147–164CrossRefMATH Ezzat MA, Zakaria M, Shaker O, Barakat F (1996) State space formulation to viscoelastic fluid flow of magnetohydrodynamic free convection through a porous medium. Acta Mech 119:147–164CrossRefMATH
Zurück zum Zitat Ezzat MA, El-Karamany AS, Samaan AA (2001) State-space formulation to generalized thermoviscoelasticity with thermal relaxation. J Therm Stress 24:823–846CrossRef Ezzat MA, El-Karamany AS, Samaan AA (2001) State-space formulation to generalized thermoviscoelasticity with thermal relaxation. J Therm Stress 24:823–846CrossRef
Zurück zum Zitat Ezzat MA, El-Karamany AS, El-Bary AA (2009) State space approach to one-dimensional magneto-thermoelasticity under the Green-Naghdi theories. Can J Phys 87:867–878CrossRef Ezzat MA, El-Karamany AS, El-Bary AA (2009) State space approach to one-dimensional magneto-thermoelasticity under the Green-Naghdi theories. Can J Phys 87:867–878CrossRef
Zurück zum Zitat Ezzat MA, El-Bary AA, Fayik M (2013) Fractional Fourier law with three-phase lag of thermoelasticity. Mech Adv Mater Struct 20:593–602CrossRef Ezzat MA, El-Bary AA, Fayik M (2013) Fractional Fourier law with three-phase lag of thermoelasticity. Mech Adv Mater Struct 20:593–602CrossRef
Zurück zum Zitat Ezzat MA, El-Karamany AS, El-Bary AA (2014) Generalized thermo-viscoelasticity with memory-dependent derivatives. Int J Mech Sci 89:470–475CrossRef Ezzat MA, El-Karamany AS, El-Bary AA (2014) Generalized thermo-viscoelasticity with memory-dependent derivatives. Int J Mech Sci 89:470–475CrossRef
Zurück zum Zitat Ezzat MA, El-Karamany AS, El-Bary AA (2015) A novel magnetothermoelasticity theory with memory-dependent derivative. J Electromagn Waves Appl 29:1018–1031CrossRef Ezzat MA, El-Karamany AS, El-Bary AA (2015) A novel magnetothermoelasticity theory with memory-dependent derivative. J Electromagn Waves Appl 29:1018–1031CrossRef
Zurück zum Zitat Ezzat MA, El-Karamany AS, El-Bary AA (2017) Thermoelectric viscoelastic materials with memory-dependent derivative. Smart Struct Sys 19:539–551CrossRef Ezzat MA, El-Karamany AS, El-Bary AA (2017) Thermoelectric viscoelastic materials with memory-dependent derivative. Smart Struct Sys 19:539–551CrossRef
Zurück zum Zitat Hendy MH, Amin MM, Ezzat MA (2017) Application of fractional order theory to a functionally graded perfect conducting thermoelastic half space with variable Lamé’s Modulii. Micro Sys 23:4891–4902 Hendy MH, Amin MM, Ezzat MA (2017) Application of fractional order theory to a functionally graded perfect conducting thermoelastic half space with variable Lamé’s Modulii. Micro Sys 23:4891–4902
Zurück zum Zitat Joseph DD, Preziosi L (1990) Addendum to the paper: heat waves. Rev Mod Phys 62:375–391CrossRef Joseph DD, Preziosi L (1990) Addendum to the paper: heat waves. Rev Mod Phys 62:375–391CrossRef
Zurück zum Zitat Lata P, Kumar R, Sharma N (2016) Plane waves in an anisotropic thermoelastic. Steel Compos Struct 22:567–587CrossRef Lata P, Kumar R, Sharma N (2016) Plane waves in an anisotropic thermoelastic. Steel Compos Struct 22:567–587CrossRef
Zurück zum Zitat Lord H, Shulman YA (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309CrossRefMATH Lord H, Shulman YA (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309CrossRefMATH
Zurück zum Zitat Povstenko YZ (2005) Fractional heat conduction equation and associated thermal stresses. J Therm Stress 28:83–102CrossRef Povstenko YZ (2005) Fractional heat conduction equation and associated thermal stresses. J Therm Stress 28:83–102CrossRef
Zurück zum Zitat Povstenko YZ (2009) Thermoelasticity which uses fractional heat conduction equation. J Math Sci 162:296–305MathSciNetCrossRef Povstenko YZ (2009) Thermoelasticity which uses fractional heat conduction equation. J Math Sci 162:296–305MathSciNetCrossRef
Zurück zum Zitat Sherief HH, Abd El-Latief A (2015) A one-dimensional fractional order thermoelastic problem for a spherical cavity. Math Mech Solids 20:512–521MathSciNetCrossRefMATH Sherief HH, Abd El-Latief A (2015) A one-dimensional fractional order thermoelastic problem for a spherical cavity. Math Mech Solids 20:512–521MathSciNetCrossRefMATH
Zurück zum Zitat Sherief H, Dhaliwal R (1980) A uniqueness theorem and a variational principle for generalized thermoelasticity. J Therm Stress 3:223–231CrossRef Sherief H, Dhaliwal R (1980) A uniqueness theorem and a variational principle for generalized thermoelasticity. J Therm Stress 3:223–231CrossRef
Zurück zum Zitat Sherief HH, El-Said AA, Abd El-Latief A (2010) Fractional order theory of thermoelasticity. Int J Solids Strucs 47:269–275CrossRefMATH Sherief HH, El-Said AA, Abd El-Latief A (2010) Fractional order theory of thermoelasticity. Int J Solids Strucs 47:269–275CrossRefMATH
Metadaten
Titel
Magneto-electric interactions without energy dissipation for a fractional thermoelastic spherical cavity
Publikationsdatum
25.11.2017
Erschienen in
Microsystem Technologies / Ausgabe 7/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3643-y

Weitere Artikel der Ausgabe 7/2018

Microsystem Technologies 7/2018 Zur Ausgabe

Neuer Inhalt