Skip to main content
Erschienen in: Microsystem Technologies 3/2020

27.07.2019 | Technical Paper

Characterization of SOI technology based MEMS differential capacitive accelerometer and its estimation of resolution by near vertical tilt angle measurements

verfasst von: Yashoda Parmar, Nidhi Gupta, Vinita Gond, S. S. Lamba, Siva Rama Krishna Vanjari, Shankar Dutta, K. K. Jain, D. K. Bhattacharya

Erschienen in: Microsystem Technologies | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper discusses the evaluation and testing of MEMS capacitive accelerometer (z-axis sensitive) fabricated using silicon-on-insulator (SOI) wafer. The accelerometer structure consists of highly conductive (p-type, resistivity: 0.001 Ω-cm) silicon proof mass (1000 μm × 1000 μm × 30 μm) suspended by four crab-like L-shaped beams (1150 μm × 30 μm × 30 μm) over Pyrex (7740) glass cavity (5 μm depth). Rest capacitance of the accelerometer structure is found to be ~ 2.1–2.25 pF range. Qualified accelerometer chips are packaged and sealed in lead less ceramic (LCC) package along with capacitive readout circuitry chip. Packaged accelerometer showed a scale factor sensitivity of ~ 47 mV/g in − 17–42 g acceleration range with 3% non-linearity. Corresponding cross-axis sensitivity also measured (2%) in full-scale range. Frequency response of the accelerometer showed a 3 dB bandwidth of 380 Hz. Resolution of the accelerometer is measured by an innovative technique involving inclinometer. Here, the device output is recorded at near vertical mounting tilt angle (θ ~ 90°) of inclinometer. Present accelerometer output can be resolved at the inclinometer measurement at 90° (output: 2.42662 V) and 89° (output: 2.42780 V) which corresponds to an acceleration resolution of ~ 17 mg.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdolvand R, Amini BV, Ayazi F (2007) Sub-micro-gravity in-plane accelerometers with reduced capacitive gaps and extra seismic mass. IEEE MEMS 16(5):1036CrossRef Abdolvand R, Amini BV, Ayazi F (2007) Sub-micro-gravity in-plane accelerometers with reduced capacitive gaps and extra seismic mass. IEEE MEMS 16(5):1036CrossRef
Zurück zum Zitat Aydemir A, Terzioglu Y, Akin T (2016) A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer. Sens Actuators A 244:324CrossRef Aydemir A, Terzioglu Y, Akin T (2016) A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer. Sens Actuators A 244:324CrossRef
Zurück zum Zitat Bao M (2005) Analysis and design principles of MEMS devices. Elsevier publication, Amsterdam, Netherlands Bao M (2005) Analysis and design principles of MEMS devices. Elsevier publication, Amsterdam, Netherlands
Zurück zum Zitat Benmessaoud M, Nasreddine MM (2013) Optimization of MEMS capacitive accelerometer. Microsyst Technol 19:713CrossRef Benmessaoud M, Nasreddine MM (2013) Optimization of MEMS capacitive accelerometer. Microsyst Technol 19:713CrossRef
Zurück zum Zitat Bhan RK, Shaveta Imran Md, Pal R, Dutta S (2015a) An improved analytical approach for estimation of misalignment error of sensing axis in MEMS accelerometers using simple tilt measurements. Sens Transducers 189(6):128 Bhan RK, Shaveta Imran Md, Pal R, Dutta S (2015a) An improved analytical approach for estimation of misalignment error of sensing axis in MEMS accelerometers using simple tilt measurements. Sens Transducers 189(6):128
Zurück zum Zitat Bhan RK, Shaveta Panchal A, Parmar Y, Sharma C, Pal R, Dutta S (2015b) Determination of multiple spring constants, gaps and pull down voltages in MEMS crab type micro-accelerometer using near pull down capacitance voltage measurements. Sens Transducers 192(9):44 Bhan RK, Shaveta Panchal A, Parmar Y, Sharma C, Pal R, Dutta S (2015b) Determination of multiple spring constants, gaps and pull down voltages in MEMS crab type micro-accelerometer using near pull down capacitance voltage measurements. Sens Transducers 192(9):44
Zurück zum Zitat Bhan RK, Shaveta Imran Md, Pal R, Dutta S, Yadav I (2016) Development of unified fabrication process and testing of MEMS based comb and crab type capacitive accelerometers for navigational applications. Sens Transducers 203(8):8 Bhan RK, Shaveta Imran Md, Pal R, Dutta S, Yadav I (2016) Development of unified fabrication process and testing of MEMS based comb and crab type capacitive accelerometers for navigational applications. Sens Transducers 203(8):8
Zurück zum Zitat Chao M Yu, Ali A, Ghosh S, Lee JEY (2017) An aluminum nitride on silicon resonant MEMS accelerometer operating in ambient pressure. IEEE Transducers. pp 607-610 Chao M Yu, Ali A, Ghosh S, Lee JEY (2017) An aluminum nitride on silicon resonant MEMS accelerometer operating in ambient pressure. IEEE Transducers. pp 607-610
Zurück zum Zitat DeLos Santos HJ (2004) Introduction to Micro-electro-mechanical (MEMS) Microwave Systems. Chap 1&2, 2nd edn. Artech House, Boston, London DeLos Santos HJ (2004) Introduction to Micro-electro-mechanical (MEMS) Microwave Systems. Chap 1&2, 2nd edn. Artech House, Boston, London
Zurück zum Zitat Dutta S, Shaveta Pal R, Bhattacharya DK, Datta P, Chatterjee R (2008) Design and analysis of wet etching based comb type capacitive accelerometer. Sens Transducers 91(4):31 Dutta S, Shaveta Pal R, Bhattacharya DK, Datta P, Chatterjee R (2008) Design and analysis of wet etching based comb type capacitive accelerometer. Sens Transducers 91(4):31
Zurück zum Zitat Dutta S, Pal R, Kumar P, Hooda OP, Singh J, Shaveta Saxena G, Datta P, Chatterjee R (2009) Fabrication challenges for realization of wet etching based comb type capacitive microaccelerometer structure. Sens Transducers 111(12):18 Dutta S, Pal R, Kumar P, Hooda OP, Singh J, Shaveta Saxena G, Datta P, Chatterjee R (2009) Fabrication challenges for realization of wet etching based comb type capacitive microaccelerometer structure. Sens Transducers 111(12):18
Zurück zum Zitat Dutta S, Kumar M, Kumar S, Imran Md, Yadav I, Kumar A, Kumar P, Pal R (2014a) Lapping assisted dissolved wafer process of silicon for MEMS structures. J Mater Sci Mater Electron 25:1984CrossRef Dutta S, Kumar M, Kumar S, Imran Md, Yadav I, Kumar A, Kumar P, Pal R (2014a) Lapping assisted dissolved wafer process of silicon for MEMS structures. J Mater Sci Mater Electron 25:1984CrossRef
Zurück zum Zitat Dutta S, Shaveta Imran Md, Pal R, Bhan RK (2014b) Diffusion induced residual stress in comb-type microaccelerometer structure. J Mater Sci Mater Electron 25:3828CrossRef Dutta S, Shaveta Imran Md, Pal R, Bhan RK (2014b) Diffusion induced residual stress in comb-type microaccelerometer structure. J Mater Sci Mater Electron 25:3828CrossRef
Zurück zum Zitat Dutta S, Saxena P, Panchal A, Pal R, Jain KK, Bhattacharya DK (2018) Effect of vacuum packaging on bandwidth of push–pull type capacitive accelerometer structure. Microsyst Technol 24:4855CrossRef Dutta S, Saxena P, Panchal A, Pal R, Jain KK, Bhattacharya DK (2018) Effect of vacuum packaging on bandwidth of push–pull type capacitive accelerometer structure. Microsyst Technol 24:4855CrossRef
Zurück zum Zitat Felnhofer D, Khazeni K, Mignard M, Tung YJ, Webster JR, Chui C, Gusev EP (2007) Device physics of capacitive MEMS. Microelectron Eng 84:2158CrossRef Felnhofer D, Khazeni K, Mignard M, Tung YJ, Webster JR, Chui C, Gusev EP (2007) Device physics of capacitive MEMS. Microelectron Eng 84:2158CrossRef
Zurück zum Zitat Gesing AL, Alves FDP, Paul S, Cordioli JA (2018) On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci Rep 8(3920):1 Gesing AL, Alves FDP, Paul S, Cordioli JA (2018) On the design of a MEMS piezoelectric accelerometer coupled to the middle ear as an implantable sensor for hearing devices. Sci Rep 8(3920):1
Zurück zum Zitat Li W, Song Z, Li X, Che L, Wang Y (2014) A novel sandwich capacitive accelerometer with a double-sided 16-beam-mass structure. Microelectron Eng 115:32–38CrossRef Li W, Song Z, Li X, Che L, Wang Y (2014) A novel sandwich capacitive accelerometer with a double-sided 16-beam-mass structure. Microelectron Eng 115:32–38CrossRef
Zurück zum Zitat Mahmood MdS, Butler ZC, Butler DP (2017) Design, fabrication and characterization of flexible MEMS accelerometer using multi-Level UV-LIGA. Sens Actuators A 263:530CrossRef Mahmood MdS, Butler ZC, Butler DP (2017) Design, fabrication and characterization of flexible MEMS accelerometer using multi-Level UV-LIGA. Sens Actuators A 263:530CrossRef
Zurück zum Zitat Mistry KK, Swamy KBM, Sen S (2010) Design of a SOI-MEMS high-resolution capacitive type single axis accelerometer. Microsyst Technol 16:2057CrossRef Mistry KK, Swamy KBM, Sen S (2010) Design of a SOI-MEMS high-resolution capacitive type single axis accelerometer. Microsyst Technol 16:2057CrossRef
Zurück zum Zitat Narasimhan V, Li H, Jianmin M (2015) Micromachined high-g accelerometers: a review. J Micromech Microeng 25:033001CrossRef Narasimhan V, Li H, Jianmin M (2015) Micromachined high-g accelerometers: a review. J Micromech Microeng 25:033001CrossRef
Zurück zum Zitat Shaeffer DK (2013) MEMS inertial sensors: a tutorial overview. IEEE Commun Mag 51:100CrossRef Shaeffer DK (2013) MEMS inertial sensors: a tutorial overview. IEEE Commun Mag 51:100CrossRef
Zurück zum Zitat Tsai MH, Liu YC, Fang W (2012) A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes. IEEE MEMS 21:1329CrossRef Tsai MH, Liu YC, Fang W (2012) A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes. IEEE MEMS 21:1329CrossRef
Zurück zum Zitat Tseng SH, Wu PC, Tsai HH, Juang YZ (2014) Monolithic z-axis CMOS MEMS accelerometer. Microelectron Eng 119:178–182CrossRef Tseng SH, Wu PC, Tsai HH, Juang YZ (2014) Monolithic z-axis CMOS MEMS accelerometer. Microelectron Eng 119:178–182CrossRef
Zurück zum Zitat Wang LP, Wolf RA, Wang Y, Deng KK, Zou L, Davis RJ, Mckinstry ST (2003) Design, fabrication, and measurement of high-sensitivity piezoelectric micro-electro-mechanical systems accelerometers. IEEE MEMS 12(4):433CrossRef Wang LP, Wolf RA, Wang Y, Deng KK, Zou L, Davis RJ, Mckinstry ST (2003) Design, fabrication, and measurement of high-sensitivity piezoelectric micro-electro-mechanical systems accelerometers. IEEE MEMS 12(4):433CrossRef
Zurück zum Zitat Watson NF (1986) Accelerometer system. US Patent 4601206 A Watson NF (1986) Accelerometer system. US Patent 4601206 A
Zurück zum Zitat Xiao D, Li Q, Hou Z, Xia D, Xu X, Wu X (2017) A double differential torsional micro-accelerometer based on V-shape beam. Sens Actuators A 258:182CrossRef Xiao D, Li Q, Hou Z, Xia D, Xu X, Wu X (2017) A double differential torsional micro-accelerometer based on V-shape beam. Sens Actuators A 258:182CrossRef
Zurück zum Zitat Yazdi N, Ayazi F, Najaf K (1998) Micromachined inertial sensors. Proc IEEE 86(8):1640CrossRef Yazdi N, Ayazi F, Najaf K (1998) Micromachined inertial sensors. Proc IEEE 86(8):1640CrossRef
Zurück zum Zitat Zhou X, Che L, Lin Y, Li X, Wu J, Wang Y (2014) Fabrication of a MEMS capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure. Microsyst Technol 20:1365CrossRef Zhou X, Che L, Lin Y, Li X, Wu J, Wang Y (2014) Fabrication of a MEMS capacitive accelerometer with symmetrical double-sided serpentine beam-mass structure. Microsyst Technol 20:1365CrossRef
Zurück zum Zitat Zhou X, Che L, Liang S, Lin Y, Li X, Wang Y (2015) Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure. Microelectron Eng 131:51CrossRef Zhou X, Che L, Liang S, Lin Y, Li X, Wang Y (2015) Design and fabrication of a MEMS capacitive accelerometer with fully symmetrical double-sided H-shaped beam structure. Microelectron Eng 131:51CrossRef
Zurück zum Zitat Zotov SA, Simon BR, Trusov AA, Shkel AM (2015) High quality factor resonant MEMS accelerometer with continuous thermal compensation. IEEE Sens 15:5045CrossRef Zotov SA, Simon BR, Trusov AA, Shkel AM (2015) High quality factor resonant MEMS accelerometer with continuous thermal compensation. IEEE Sens 15:5045CrossRef
Metadaten
Titel
Characterization of SOI technology based MEMS differential capacitive accelerometer and its estimation of resolution by near vertical tilt angle measurements
verfasst von
Yashoda Parmar
Nidhi Gupta
Vinita Gond
S. S. Lamba
Siva Rama Krishna Vanjari
Shankar Dutta
K. K. Jain
D. K. Bhattacharya
Publikationsdatum
27.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 3/2020
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-019-04561-6

Weitere Artikel der Ausgabe 3/2020

Microsystem Technologies 3/2020 Zur Ausgabe

Neuer Inhalt