Skip to main content
Erschienen in: Acta Mechanica 3/2020

04.12.2019 | Original Paper

Generalized variational principles for buckling analysis of circular cylinders

verfasst von: Ji-Huan He

Erschienen in: Acta Mechanica | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A generalized variational principle and a parameterized generalized variational principle are obtained for large deformation analysis of circular cylinders by the semi-inverse method; all known variational principles in the literature are special cases of the obtained parameterized functional. In this approach, a trial functional is constructed with an energy-like integral involving an unknown function, which is identified step by step. The present paper provides a quite straightforward but rigorous tool to the construction of a variational principle for the shell or plate buckling.
Literatur
1.
Zurück zum Zitat Adamu, M.Y., Ogenyi, P.: New approach to parameterized homotopy perturbation method. Therm. Sci. 22(4), 1865–1870 (2018)CrossRef Adamu, M.Y., Ogenyi, P.: New approach to parameterized homotopy perturbation method. Therm. Sci. 22(4), 1865–1870 (2018)CrossRef
3.
Zurück zum Zitat Anjum, N., He, J.H.: Laplace transform: making the variational iteration method easier. Appl. Math. Lett. 92, 134–138 (2019)MathSciNetCrossRef Anjum, N., He, J.H.: Laplace transform: making the variational iteration method easier. Appl. Math. Lett. 92, 134–138 (2019)MathSciNetCrossRef
4.
Zurück zum Zitat Chien, W.Z.: Torsional rigidity of shells of revolution. Appl. Math. Mech. 11(5), 403–412 (1990)CrossRef Chien, W.Z.: Torsional rigidity of shells of revolution. Appl. Math. Mech. 11(5), 403–412 (1990)CrossRef
5.
Zurück zum Zitat Dost, S., Tabarrok, B.: Some variational formulations for buckling analysis of circular cylinders. Int. J. Solids Struct. 20(4), 315–326 (1984)MathSciNetCrossRef Dost, S., Tabarrok, B.: Some variational formulations for buckling analysis of circular cylinders. Int. J. Solids Struct. 20(4), 315–326 (1984)MathSciNetCrossRef
6.
Zurück zum Zitat Dost, S., Tabarrok, B.: Application of a mixed variational principle to buckling analysis of circular cylinders. Z. Angew. Math. Mech. 68(3), 131–137 (1988)MathSciNetCrossRef Dost, S., Tabarrok, B.: Application of a mixed variational principle to buckling analysis of circular cylinders. Z. Angew. Math. Mech. 68(3), 131–137 (1988)MathSciNetCrossRef
7.
Zurück zum Zitat Gazzola, F., Wang, Y., Pavani, R.: Variational formulation of the Melan equation. Math. Methods Appl. Sci. 41(3), 943–951 (2018)MathSciNetCrossRef Gazzola, F., Wang, Y., Pavani, R.: Variational formulation of the Melan equation. Math. Methods Appl. Sci. 41(3), 943–951 (2018)MathSciNetCrossRef
8.
Zurück zum Zitat He, J.H.: Hybrid problems of determining unknown shape of bladings in compressible S2-flow in mixed-flow turbomachinery via variational technique. Aircr. Eng. Aerosp. Technol. 71(2), 154–159 (1999)CrossRef He, J.H.: Hybrid problems of determining unknown shape of bladings in compressible S2-flow in mixed-flow turbomachinery via variational technique. Aircr. Eng. Aerosp. Technol. 71(2), 154–159 (1999)CrossRef
9.
Zurück zum Zitat He, J.H.: Inverse problems of determining the unknown shape of oscillating airfoils in compressible 2D unsteady flow via variational technique. Aircr. Eng. Aerosp. Technol. 72(1), 18–24 (2000)CrossRef He, J.H.: Inverse problems of determining the unknown shape of oscillating airfoils in compressible 2D unsteady flow via variational technique. Aircr. Eng. Aerosp. Technol. 72(1), 18–24 (2000)CrossRef
10.
11.
12.
Zurück zum Zitat He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006)MathSciNetCrossRef He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006)MathSciNetCrossRef
13.
Zurück zum Zitat He, J.H.: A tutorial review on fractal space time and fractional calculus. Int. J. Theor. Phys. 53, 3698–718 (2014)CrossRef He, J.H.: A tutorial review on fractal space time and fractional calculus. Int. J. Theor. Phys. 53, 3698–718 (2014)CrossRef
14.
Zurück zum Zitat He, J.H.: An alternative approach to establishment of a variational principle for the torsional problem of piezoelastic beams. Appl. Math. Lett. 52, 1–3 (2016)MathSciNetCrossRef He, J.H.: An alternative approach to establishment of a variational principle for the torsional problem of piezoelastic beams. Appl. Math. Lett. 52, 1–3 (2016)MathSciNetCrossRef
16.
Zurück zum Zitat He, J.H.: Generalized equilibrium equations for shell derived from a generalized variational principle. Appl. Math. Lett. 64, 94–100 (2017)MathSciNetCrossRef He, J.H.: Generalized equilibrium equations for shell derived from a generalized variational principle. Appl. Math. Lett. 64, 94–100 (2017)MathSciNetCrossRef
17.
Zurück zum Zitat He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018) CrossRef He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018) CrossRef
22.
Zurück zum Zitat Li, X.X., Tian, D., He, C.H.: A fractal modification of the surface coverage model for an electrochemical arsenic sensor. Electrochim. Acta 296, 491–493 (2019)CrossRef Li, X.X., Tian, D., He, C.H.: A fractal modification of the surface coverage model for an electrochemical arsenic sensor. Electrochim. Acta 296, 491–493 (2019)CrossRef
23.
Zurück zum Zitat Liu, G.L.: Formulation of inverse problem of 2-D unsteady flow around oscillating airfoils by variational principles. Acta Aerodyn. Sin. 14(1), 1–6 (1996)MathSciNet Liu, G.L.: Formulation of inverse problem of 2-D unsteady flow around oscillating airfoils by variational principles. Acta Aerodyn. Sin. 14(1), 1–6 (1996)MathSciNet
24.
Zurück zum Zitat Liu, Z.J., Adamu, M.Y., Suleiman, E., et al.: Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations. Therm. Sci. 21, 1843–1846 (2017)CrossRef Liu, Z.J., Adamu, M.Y., Suleiman, E., et al.: Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations. Therm. Sci. 21, 1843–1846 (2017)CrossRef
25.
Zurück zum Zitat Liu, Z.R., Cu, G.Q., Wang, X.: Vibration characteristics of a tunnel structure based on soil-structure interaction. Int. J. Geomech. 14(4), 04014018 (2014)CrossRef Liu, Z.R., Cu, G.Q., Wang, X.: Vibration characteristics of a tunnel structure based on soil-structure interaction. Int. J. Geomech. 14(4), 04014018 (2014)CrossRef
26.
Zurück zum Zitat Tabarrok, B., Dost, S.: Some variational formulations for large deformation analysis of plates. Computer Methods Appl. Mech. Eng. 22(3), 279–288 (1980)MathSciNetCrossRef Tabarrok, B., Dost, S.: Some variational formulations for large deformation analysis of plates. Computer Methods Appl. Mech. Eng. 22(3), 279–288 (1980)MathSciNetCrossRef
27.
Zurück zum Zitat Wang, Q.L., Shi, X.Y., He, J.H.: Fractal calculus and its application to explanation of biomechanism of polar bear hairs. Fractals 26, 1850086 (2018)CrossRef Wang, Q.L., Shi, X.Y., He, J.H.: Fractal calculus and its application to explanation of biomechanism of polar bear hairs. Fractals 26, 1850086 (2018)CrossRef
28.
Zurück zum Zitat Wang, Y., An, J.Y., Wang, X.Q.: A variational formulation for anisotropic wave traveling in a porous medium. Fractals 27(4), 1950047 (2019)MathSciNetCrossRef Wang, Y., An, J.Y., Wang, X.Q.: A variational formulation for anisotropic wave traveling in a porous medium. Fractals 27(4), 1950047 (2019)MathSciNetCrossRef
30.
Zurück zum Zitat Washizu, K.: Variational Methods in Elasticity and Plasticity, 2nd edn. Pergamon Press, New York (1975)MATH Washizu, K.: Variational Methods in Elasticity and Plasticity, 2nd edn. Pergamon Press, New York (1975)MATH
31.
Zurück zum Zitat Wu, Y., He, J.H.: A remark on Samuelson’s variational principle in economics. Appl. Math. Lett. 84, 143–147 (2018) MathSciNetCrossRef Wu, Y., He, J.H.: A remark on Samuelson’s variational principle in economics. Appl. Math. Lett. 84, 143–147 (2018) MathSciNetCrossRef
32.
Zurück zum Zitat Wu, Y., He, J.H.: Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass. Results Phys. 10, 270–271 (2018)CrossRef Wu, Y., He, J.H.: Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass. Results Phys. 10, 270–271 (2018)CrossRef
33.
Zurück zum Zitat Wu, Y.P., Lu, E., Zhang, S.: Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle. Struct. Eng. Mech. 68(3), 377–384 (2018) Wu, Y.P., Lu, E., Zhang, S.: Study on bi-stable behaviors of un-stressed thin cylindrical shells based on the extremal principle. Struct. Eng. Mech. 68(3), 377–384 (2018)
34.
Zurück zum Zitat Zhou, L., Huang, Y.: The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns. Struct. Eng. Mech. Int. l J. 19(4), 401–411 (2005)CrossRef Zhou, L., Huang, Y.: The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns. Struct. Eng. Mech. Int. l J. 19(4), 401–411 (2005)CrossRef
Metadaten
Titel
Generalized variational principles for buckling analysis of circular cylinders
verfasst von
Ji-Huan He
Publikationsdatum
04.12.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 3/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02569-7

Weitere Artikel der Ausgabe 3/2020

Acta Mechanica 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.