Skip to main content
Erschienen in: Foundations of Computational Mathematics 5/2016

01.10.2016

Generalized Sampling and Infinite-Dimensional Compressed Sensing

verfasst von: Ben Adcock, Anders C. Hansen

Erschienen in: Foundations of Computational Mathematics | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We introduce and analyze a framework and corresponding method for compressed sensing in infinite dimensions. This extends the existing theory from finite-dimensional vector spaces to the case of separable Hilbert spaces. We explain why such a new theory is necessary by demonstrating that existing finite-dimensional techniques are ill suited for solving a number of key problems. This work stems from recent developments in generalized sampling theorems for classical (Nyquist rate) sampling that allows for reconstructions in arbitrary bases. A conclusion of this paper is that one can extend these ideas to allow for significant subsampling of sparse or compressible signals. Central to this work is the introduction of two novel concepts in sampling theory, the stable sampling rate and the balancing property, which specify how to appropriately discretize an infinite-dimensional problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Since writing this paper, it has subsequently been shown that the term N / m can be removed and that noise can be incorporated in the data and recovery guarantees. See [7] for details.
 
Literatur
1.
2.
Zurück zum Zitat B. Adcock and A. C. Hansen. A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl., 18(4):685–716, 2012.MathSciNetMATHCrossRef B. Adcock and A. C. Hansen. A generalized sampling theorem for stable reconstructions in arbitrary bases. J. Fourier Anal. Appl., 18(4):685–716, 2012.MathSciNetMATHCrossRef
3.
Zurück zum Zitat B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal., 32(3):357–388, 2012.MathSciNetMATHCrossRef B. Adcock and A. C. Hansen. Stable reconstructions in Hilbert spaces and the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal., 32(3):357–388, 2012.MathSciNetMATHCrossRef
4.
Zurück zum Zitat B. Adcock, A. C. Hansen, E. Herrholz, and G. Teschke. Generalized sampling: extension to frames and inverse and ill-posed problems. Inverse Problems, 29(1):015008, 2013.MathSciNetMATHCrossRef B. Adcock, A. C. Hansen, E. Herrholz, and G. Teschke. Generalized sampling: extension to frames and inverse and ill-posed problems. Inverse Problems, 29(1):015008, 2013.MathSciNetMATHCrossRef
5.
Zurück zum Zitat B. Adcock, A. C. Hansen, and C. Poon. Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal., 45(5):3114–3131, 2013.MathSciNetMATHCrossRef B. Adcock, A. C. Hansen, and C. Poon. Beyond consistent reconstructions: optimality and sharp bounds for generalized sampling, and application to the uniform resampling problem. SIAM J. Math. Anal., 45(5):3114–3131, 2013.MathSciNetMATHCrossRef
6.
Zurück zum Zitat B. Adcock, A. C. Hansen, and C. Poon. On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate. Appl. Comput. Harmon. Anal., 36(3):387–415, 2014.MathSciNetMATHCrossRef B. Adcock, A. C. Hansen, and C. Poon. On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate. Appl. Comput. Harmon. Anal., 36(3):387–415, 2014.MathSciNetMATHCrossRef
7.
Zurück zum Zitat B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: a new theory for compressed sensing. arXiv:1302.0561, 2014. B. Adcock, A. C. Hansen, C. Poon, and B. Roman. Breaking the coherence barrier: a new theory for compressed sensing. arXiv:​1302.​0561, 2014.
8.
Zurück zum Zitat B. Adcock, A. C. Hansen, B. Roman, and G. Teschke. Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum. Advances in Imaging and Electron Physics, 182:187–279, 2014.CrossRef B. Adcock, A. C. Hansen, B. Roman, and G. Teschke. Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum. Advances in Imaging and Electron Physics, 182:187–279, 2014.CrossRef
9.
Zurück zum Zitat B. Adcock, A. C. Hansen, and A. Shadrin. A stability barrier for reconstructions from Fourier samples. SIAM J. Numer. Anal., 52(1):125–139, 2014.MathSciNetMATHCrossRef B. Adcock, A. C. Hansen, and A. Shadrin. A stability barrier for reconstructions from Fourier samples. SIAM J. Numer. Anal., 52(1):125–139, 2014.MathSciNetMATHCrossRef
11.
Zurück zum Zitat A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and Y. Shkolnisky. A framework for discrete integral transformations. I. The pseudopolar Fourier transform. SIAM J. Sci. Comput., 30(2):764–784, 2008.MathSciNetMATHCrossRef A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, and Y. Shkolnisky. A framework for discrete integral transformations. I. The pseudopolar Fourier transform. SIAM J. Sci. Comput., 30(2):764–784, 2008.MathSciNetMATHCrossRef
12.
Zurück zum Zitat A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, Y. Shkolnisky, and I. Sedelnikov. A framework for discrete integral transformations. II. The 2D discrete Radon transform. SIAM J. Sci. Comput., 30(2):785–803, 2008.MathSciNetMATHCrossRef A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli, Y. Shkolnisky, and I. Sedelnikov. A framework for discrete integral transformations. II. The 2D discrete Radon transform. SIAM J. Sci. Comput., 30(2):785–803, 2008.MathSciNetMATHCrossRef
13.
Zurück zum Zitat A. Bastounis and A. C. Hansen. On the absence of the RIP in real-world applications of compressed sensing and the RIP in levels. arXiv:1411.4449, 2014. A. Bastounis and A. C. Hansen. On the absence of the RIP in real-world applications of compressed sensing and the RIP in levels. arXiv:​1411.​4449, 2014.
14.
Zurück zum Zitat T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulout. Sparse sampling of signal innovations. IEEE Signal Process. Mag., 25(2):31–40, 2008.CrossRef T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulout. Sparse sampling of signal innovations. IEEE Signal Process. Mag., 25(2):31–40, 2008.CrossRef
15.
Zurück zum Zitat A. Bourrier, M. E. Davies, T. Peleg, P. Pérez, and R. Gribonval. Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems. IEEE Trans. Inform. Theory, 60(12):7928–7946, 2014.MathSciNetCrossRef A. Bourrier, M. E. Davies, T. Peleg, P. Pérez, and R. Gribonval. Fundamental performance limits for ideal decoders in high-dimensional linear inverse problems. IEEE Trans. Inform. Theory, 60(12):7928–7946, 2014.MathSciNetCrossRef
16.
Zurück zum Zitat E. J. Candès. An introduction to compressive sensing. IEEE Signal Process. Mag., 25(2):21–30, 2008.CrossRef E. J. Candès. An introduction to compressive sensing. IEEE Signal Process. Mag., 25(2):21–30, 2008.CrossRef
17.
Zurück zum Zitat E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Comm. Pure Appl. Math. (to appear), 67(6):906–956, 2014.MathSciNetMATHCrossRef E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Comm. Pure Appl. Math. (to appear), 67(6):906–956, 2014.MathSciNetMATHCrossRef
18.
Zurück zum Zitat E. J. Candes and Y. Plan. A Probabilistic and RIPless Theory of Compressed Sensing. IEEE Trans. Inform. Theory, 57(11):7235–7254, 2011.MathSciNetCrossRef E. J. Candes and Y. Plan. A Probabilistic and RIPless Theory of Compressed Sensing. IEEE Trans. Inform. Theory, 57(11):7235–7254, 2011.MathSciNetCrossRef
19.
Zurück zum Zitat E. J. Candès and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3):969–985, 2007.MathSciNetMATHCrossRef E. J. Candès and J. Romberg. Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3):969–985, 2007.MathSciNetMATHCrossRef
20.
Zurück zum Zitat E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509, 2006.MathSciNetMATHCrossRef E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509, 2006.MathSciNetMATHCrossRef
21.
Zurück zum Zitat E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.MathSciNetMATHCrossRef E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.MathSciNetMATHCrossRef
22.
Zurück zum Zitat Y. Chi, L. L. Scharf, A. Pezeshki, and A. Calderbank. Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process., 59(5):2182–2195, 2011.MathSciNetCrossRef Y. Chi, L. L. Scharf, A. Pezeshki, and A. Calderbank. Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process., 59(5):2182–2195, 2011.MathSciNetCrossRef
23.
Zurück zum Zitat A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best \(k\)-term approximation. J. Amer. Math. Soc., 22(1):211–231, 2009.MathSciNetMATHCrossRef A. Cohen, W. Dahmen, and R. DeVore. Compressed sensing and best \(k\)-term approximation. J. Amer. Math. Soc., 22(1):211–231, 2009.MathSciNetMATHCrossRef
24.
Zurück zum Zitat M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to compressed sensing. In Compressed Sensing: Theory and Applications. Cambridge University Press, 2011. M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok. Introduction to compressed sensing. In Compressed Sensing: Theory and Applications. Cambridge University Press, 2011.
26.
Zurück zum Zitat D. L. Donoho and J. Tanner. Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Amer. Math. Soc., 22(1):1–53, 2009.MathSciNetMATHCrossRef D. L. Donoho and J. Tanner. Counting faces of randomly projected polytopes when the projection radically lowers dimension. J. Amer. Math. Soc., 22(1):1–53, 2009.MathSciNetMATHCrossRef
27.
Zurück zum Zitat P. L. Dragotti, M. Vetterli, and T. Blu. Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process., 55(5):1741–1757, 2007.MathSciNetCrossRef P. L. Dragotti, M. Vetterli, and T. Blu. Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang–Fix. IEEE Trans. Signal Process., 55(5):1741–1757, 2007.MathSciNetCrossRef
28.
Zurück zum Zitat I. Ekeland and T. Turnbull. Infinite-dimensional optimization and convexity. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1983. I. Ekeland and T. Turnbull. Infinite-dimensional optimization and convexity. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1983.
29.
Zurück zum Zitat Y. Eldar. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl., 9(1):77–96, 2003. Y. Eldar. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors. J. Fourier Anal. Appl., 9(1):77–96, 2003.
30.
Zurück zum Zitat Y. C. Eldar. Compressed sensing of analog signals in shift-invariant spaces. IEEE Trans. Signal Process., 57(8):2986–2997, 2009.MathSciNetCrossRef Y. C. Eldar. Compressed sensing of analog signals in shift-invariant spaces. IEEE Trans. Signal Process., 57(8):2986–2997, 2009.MathSciNetCrossRef
31.
Zurück zum Zitat Y. C. Eldar and T. Michaeli. Beyond Bandlimited Sampling. IEEE Signal Process. Mag., 26(3):48–68, 2009.MathSciNetCrossRef Y. C. Eldar and T. Michaeli. Beyond Bandlimited Sampling. IEEE Signal Process. Mag., 26(3):48–68, 2009.MathSciNetCrossRef
32.
Zurück zum Zitat A. Fannjiang and W. Liao. Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Imaging Sci., 5:179–202, 2012.MathSciNetMATHCrossRef A. Fannjiang and W. Liao. Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Imaging Sci., 5:179–202, 2012.MathSciNetMATHCrossRef
33.
Zurück zum Zitat M. Fornasier and H. Rauhut. Compressive sensing. In Handbook of Mathematical Methods in Imaging, pages 187–228. Springer, 2011. M. Fornasier and H. Rauhut. Compressive sensing. In Handbook of Mathematical Methods in Imaging, pages 187–228. Springer, 2011.
34.
Zurück zum Zitat S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhauser, 2013.MATHCrossRef S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Birkhauser, 2013.MATHCrossRef
35.
Zurück zum Zitat K. Gröchenig, Z. Rzeszotnik, and T. Strohmer. Quantitative estimates for the finite section method and Banach algebras of matrices. Integr Equat Oper Th., 67(2):183–202, 2011. K. Gröchenig, Z. Rzeszotnik, and T. Strohmer. Quantitative estimates for the finite section method and Banach algebras of matrices. Integr Equat Oper Th., 67(2):183–202, 2011.
36.
Zurück zum Zitat D. Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory, 57(3):1548–1566, 2011.MathSciNetCrossRef D. Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory, 57(3):1548–1566, 2011.MathSciNetCrossRef
37.
Zurück zum Zitat D. Gross, F. Krahmer, and R. Kueng. A partial derandomization of phaselift using spherical designs. arXiv:1310.2267, 2014. D. Gross, F. Krahmer, and R. Kueng. A partial derandomization of phaselift using spherical designs. arXiv:​1310.​2267, 2014.
38.
Zurück zum Zitat M. Guerquin-Kern, M. Häberlin, K. P. Pruessmann, and M. Unser. A fast wavelet-based reconstruction method for Magnetic Resonance Imaging. IEEE Trans. Med. Imaging, 30(9):1649–1660, 2011.CrossRef M. Guerquin-Kern, M. Häberlin, K. P. Pruessmann, and M. Unser. A fast wavelet-based reconstruction method for Magnetic Resonance Imaging. IEEE Trans. Med. Imaging, 30(9):1649–1660, 2011.CrossRef
39.
Zurück zum Zitat M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and M. Unser. Realistic analytical phantoms for parallel Magnetic Resonance Imaging. IEEE Trans. Med. Imaging, 31(3):626–636, 2012.CrossRef M. Guerquin-Kern, L. Lejeune, K. P. Pruessmann, and M. Unser. Realistic analytical phantoms for parallel Magnetic Resonance Imaging. IEEE Trans. Med. Imaging, 31(3):626–636, 2012.CrossRef
40.
Zurück zum Zitat A. C. Hansen. On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal., 254(8):2092–2126, 2008.MathSciNetMATHCrossRef A. C. Hansen. On the approximation of spectra of linear operators on Hilbert spaces. J. Funct. Anal., 254(8):2092–2126, 2008.MathSciNetMATHCrossRef
41.
Zurück zum Zitat A. C. Hansen. On the solvability complexity index, the \(n\)-pseudospectrum and approximations of spectra of operators. J. Amer. Math. Soc., 24(1):81–124, 2011.MathSciNetMATHCrossRef A. C. Hansen. On the solvability complexity index, the \(n\)-pseudospectrum and approximations of spectra of operators. J. Amer. Math. Soc., 24(1):81–124, 2011.MathSciNetMATHCrossRef
42.
Zurück zum Zitat E. Herrholz and G. Teschke. Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems. Inverse Problems, 26(12):125012, 2010.MathSciNetMATHCrossRef E. Herrholz and G. Teschke. Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems. Inverse Problems, 26(12):125012, 2010.MathSciNetMATHCrossRef
43.
Zurück zum Zitat T. Hrycak and K. Gröchenig. Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys., 229(3):933–946, 2010.MathSciNetMATHCrossRef T. Hrycak and K. Gröchenig. Pseudospectral Fourier reconstruction with the modified inverse polynomial reconstruction method. J. Comput. Phys., 229(3):933–946, 2010.MathSciNetMATHCrossRef
45.
Zurück zum Zitat M. Ledoux. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, 2001. M. Ledoux. The Concentration of Measure Phenomenon, volume 89 of Mathematical Surveys and Monographs. American Mathematical Society, 2001.
46.
Zurück zum Zitat M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed Sensing MRI. IEEE Signal Process. Mag., 25(2):72–82, March 2008. M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed Sensing MRI. IEEE Signal Process. Mag., 25(2):72–82, March 2008.
47.
Zurück zum Zitat M. Mishali and Y. C. Eldar. Xampling: Analog to digital at sub-Nyquist rates. IET Circuits, Devices, & Systems, 5(1):8–20, 2011.CrossRef M. Mishali and Y. C. Eldar. Xampling: Analog to digital at sub-Nyquist rates. IET Circuits, Devices, & Systems, 5(1):8–20, 2011.CrossRef
48.
Zurück zum Zitat M. Mishali, Y. C. Eldar, and A. J. Elron. Xampling: Signal acquisition and processing in union of subspaces. IEEE Trans. Signal Process., 59(10):4719–4734, 2011.MathSciNetCrossRef M. Mishali, Y. C. Eldar, and A. J. Elron. Xampling: Signal acquisition and processing in union of subspaces. IEEE Trans. Signal Process., 59(10):4719–4734, 2011.MathSciNetCrossRef
49.
Zurück zum Zitat S. K. Mitter. Convex optimization in infinite dimensional spaces. In Recent Advances in Learning and Control, volume 371 of Lecture Notes in Control and Information Science, pages 161–179. Springer, London, 2008. S. K. Mitter. Convex optimization in infinite dimensional spaces. In Recent Advances in Learning and Control, volume 371 of Lecture Notes in Control and Information Science, pages 161–179. Springer, London, 2008.
50.
51.
Zurück zum Zitat H. Rauhut and R. Ward. Sparse recovery for spherical harmonic expansions. In Proceedings of the 9th International Conference on Sampling Theory and Applications, 2011. H. Rauhut and R. Ward. Sparse recovery for spherical harmonic expansions. In Proceedings of the 9th International Conference on Sampling Theory and Applications, 2011.
52.
53.
55.
Zurück zum Zitat G. Strang and T. Nguyen. Wavelets and filter banks. Wellesley-Cambridge Press, 1997.MATH G. Strang and T. Nguyen. Wavelets and filter banks. Wellesley-Cambridge Press, 1997.MATH
56.
Zurück zum Zitat T. Strohmer. Measure what should be measured: progress and challenges in compressive sensing. IEEE Signal Proc Let., 19(12):887–893, 2012. T. Strohmer. Measure what should be measured: progress and challenges in compressive sensing. IEEE Signal Proc Let., 19(12):887–893, 2012.
58.
Zurück zum Zitat B. P. Sutton, D. C. Noll, and J. A. Fessler. Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Trans. Med. Imaging, 22(2):178–188, 2003.CrossRef B. P. Sutton, D. C. Noll, and J. A. Fessler. Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Trans. Med. Imaging, 22(2):178–188, 2003.CrossRef
60.
Zurück zum Zitat G. Tang, B. Bhaskar, P. Shah, and B. Recht. Compressed sensing off the grid. IEEE Trans. Inform. Theory., 59(11):7465–7490, 2013.MathSciNetCrossRef G. Tang, B. Bhaskar, P. Shah, and B. Recht. Compressed sensing off the grid. IEEE Trans. Inform. Theory., 59(11):7465–7490, 2013.MathSciNetCrossRef
62.
Zurück zum Zitat M. Unser. Sampling–50 years after Shannon. Proc. IEEE, 88(4):569–587, 2000.CrossRef M. Unser. Sampling–50 years after Shannon. Proc. IEEE, 88(4):569–587, 2000.CrossRef
63.
Zurück zum Zitat M. Unser and A. Aldroubi. A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process., 42(11):2915–2925, 1994.CrossRef M. Unser and A. Aldroubi. A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process., 42(11):2915–2925, 1994.CrossRef
64.
Zurück zum Zitat M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innovation. IEEE Trans. Signal Process., 50(6):1417–1428, 2002.MathSciNetCrossRef M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innovation. IEEE Trans. Signal Process., 50(6):1417–1428, 2002.MathSciNetCrossRef
Metadaten
Titel
Generalized Sampling and Infinite-Dimensional Compressed Sensing
verfasst von
Ben Adcock
Anders C. Hansen
Publikationsdatum
01.10.2016
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 5/2016
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-015-9276-6

Weitere Artikel der Ausgabe 5/2016

Foundations of Computational Mathematics 5/2016 Zur Ausgabe