Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2017

23.03.2017 | Research Paper

Optomechanical soft metamaterials

verfasst von: Xiangjun Peng, Wei He, Yifan Liu, Fengxian Xin, Tian Jian Lu

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a new type of optomechanical soft metamaterials, which is different from conventional mechanical metamaterials, in that they are simple isotropic and homogenous materials without resorting to any complex nano/microstructures. This metamaterial is unique in the sense that its responses to uniaxial forcing can be tailored by programmed laser inputs to manifest different nonlinear constitutive behaviors, such as monotonic, S-shape, plateau, and non-monotonic snapping performance. To demonstrate the novel metamaterial, a thin sheet of soft material impinged by two counterpropagating lasers along its thickness direction and stretched by an in-plane tensile mechanical force is considered. A theoretical model is formulated to characterize the resulting optomechanical behavior of the thin sheet by combining the nonlinear elasticity theory of soft materials and the optical radiation stress theory. The optical radiation stresses predicted by the proposed model are validated by simulations based on the method of finite elements. Programmed optomechanical behaviors are subsequently explored using the validated model under different initial sheet thicknesses and different optical inputs, and the first- and second-order tangential stiffness of the metamaterial are used to plot the phase diagram of its nonlinear constitutive behaviors. The proposed optomechanical soft metamaterial shows great potential in biological medicine, microfluidic manipulation, and other fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lee, J.H., Singer, J.P., Thomas, E.L.: Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782–4810 (2012)CrossRef Lee, J.H., Singer, J.P., Thomas, E.L.: Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782–4810 (2012)CrossRef
2.
Zurück zum Zitat Smith, D.R., Padilla, W.J., Vier, D.C., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRef Smith, D.R., Padilla, W.J., Vier, D.C., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)CrossRef
3.
Zurück zum Zitat Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRef Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)CrossRef
4.
Zurück zum Zitat Schurig, D., Mock, J.J., Justice, B.J., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)CrossRef Schurig, D., Mock, J.J., Justice, B.J., et al.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)CrossRef
5.
Zurück zum Zitat Nicolaou, Z.G., Motter, A.E.: Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2012)CrossRef Nicolaou, Z.G., Motter, A.E.: Mechanical metamaterials with negative compressibility transitions. Nat. Mater. 11, 608–613 (2012)CrossRef
6.
Zurück zum Zitat Lakes, R.S., Lee, T., Bersie, A., et al.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)CrossRef Lakes, R.S., Lee, T., Bersie, A., et al.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410, 565–567 (2001)CrossRef
7.
Zurück zum Zitat Moore, B., Jaglinski, T., Stone, D.S., et al.: Negative incremental bulk modulus in foams. Philos. Mag. Lett. 86, 651–659 (2006)CrossRef Moore, B., Jaglinski, T., Stone, D.S., et al.: Negative incremental bulk modulus in foams. Philos. Mag. Lett. 86, 651–659 (2006)CrossRef
8.
Zurück zum Zitat Janmey, P.A., Mccormick, M.E., Rammensee, S., et al.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007)CrossRef Janmey, P.A., Mccormick, M.E., Rammensee, S., et al.: Negative normal stress in semiflexible biopolymer gels. Nat. Mater. 6, 48–51 (2007)CrossRef
9.
Zurück zum Zitat Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRef Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRef
10.
Zurück zum Zitat Bertoldi, K., Reis, P., Willshaw, S., et al.: Novel negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRef Bertoldi, K., Reis, P., Willshaw, S., et al.: Novel negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010)CrossRef
11.
Zurück zum Zitat Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., et al.: Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998)CrossRef Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., et al.: Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998)CrossRef
12.
Zurück zum Zitat Carneiro, V.H., Puga, H., Meireles, J.: Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements. Acta Mech. Sin. 32, 1–6 (2016)MathSciNetCrossRefMATH Carneiro, V.H., Puga, H., Meireles, J.: Analysis of the geometrical dependence of auxetic behavior in reentrant structures by finite elements. Acta Mech. Sin. 32, 1–6 (2016)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Li, J., Shim, J., Deng, J., et al.: Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8, 10322–10328 (2012)CrossRef Li, J., Shim, J., Deng, J., et al.: Switching periodic membranes via pattern transformation and shape memory effect. Soft Matter 8, 10322–10328 (2012)CrossRef
14.
Zurück zum Zitat Overvelde, J.T., Kloek, T., D’Haen, J.J., et al.: Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl. Acad. Sci. U. S. A. 112, 10863–10868 (2015)CrossRef Overvelde, J.T., Kloek, T., D’Haen, J.J., et al.: Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl. Acad. Sci. U. S. A. 112, 10863–10868 (2015)CrossRef
15.
Zurück zum Zitat Singamaneni, S., Bertoldi, K., Chang, S., et al.: Bifurcated Mechanical Behavior of Deformed Periodic Porous Solids. Adv. Funct. Mater. 19, 1426–1436 (2009)CrossRef Singamaneni, S., Bertoldi, K., Chang, S., et al.: Bifurcated Mechanical Behavior of Deformed Periodic Porous Solids. Adv. Funct. Mater. 19, 1426–1436 (2009)CrossRef
16.
Zurück zum Zitat Shan, S., Kang, S.H., Raney, J.R., et al.: Multistable Architected Materials for Trapping Elastic Strain Energy. Adv. Mater. 27, 4296–4301 (2015)CrossRef Shan, S., Kang, S.H., Raney, J.R., et al.: Multistable Architected Materials for Trapping Elastic Strain Energy. Adv. Mater. 27, 4296–4301 (2015)CrossRef
17.
18.
Zurück zum Zitat Xin, F.X., Lu, T.J.: Tensional acoustomechanical soft metamaterials. Sci. Rep. 6, 27432 (2016)CrossRef Xin, F.X., Lu, T.J.: Tensional acoustomechanical soft metamaterials. Sci. Rep. 6, 27432 (2016)CrossRef
19.
Zurück zum Zitat Ploschner, M., Mazilu, M., Krauss, T.F., et al.: Optical forces near a nanoantenna. J. Nanophotonics 4, 471–478 (2010)CrossRef Ploschner, M., Mazilu, M., Krauss, T.F., et al.: Optical forces near a nanoantenna. J. Nanophotonics 4, 471–478 (2010)CrossRef
20.
Zurück zum Zitat Maclure, M.: Radiation pressure and the linear momentum of the electromagnetic field. Opt. Express 12, 5375–5401 (2004)CrossRef Maclure, M.: Radiation pressure and the linear momentum of the electromagnetic field. Opt. Express 12, 5375–5401 (2004)CrossRef
21.
Zurück zum Zitat Cui, J., Björnmalm, M., Liang, K., et al.: Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. Adv. Mater. 26, 7295–7299 (2014)CrossRef Cui, J., Björnmalm, M., Liang, K., et al.: Super-soft hydrogel particles with tunable elasticity in a microfluidic blood capillary model. Adv. Mater. 26, 7295–7299 (2014)CrossRef
22.
Zurück zum Zitat Chakrabarti, A., Chaudhury, M.K.: Direct measurement of the surface tension of a soft elastic hydrogel: exploration of elastocapillary instability in adhesion. Langmuir 29, 6926–6935 (2013)CrossRef Chakrabarti, A., Chaudhury, M.K.: Direct measurement of the surface tension of a soft elastic hydrogel: exploration of elastocapillary instability in adhesion. Langmuir 29, 6926–6935 (2013)CrossRef
23.
Zurück zum Zitat Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., et al.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)CrossRef Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., et al.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)CrossRef
24.
Zurück zum Zitat Chu, S.: Laser manipulation of atoms and particles. Science 253, 861–866 (1991)CrossRef Chu, S.: Laser manipulation of atoms and particles. Science 253, 861–866 (1991)CrossRef
25.
Zurück zum Zitat Dienerowitz, M., Mazilu, M., Dholakia, K.: Optical manipulation of nanoparticles: a review. J. Nanophotonics 2, 269–270 (2008)CrossRef Dienerowitz, M., Mazilu, M., Dholakia, K.: Optical manipulation of nanoparticles: a review. J. Nanophotonics 2, 269–270 (2008)CrossRef
26.
Zurück zum Zitat Jonás, A., Zemánek, P.: Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29, 4813–4851 (2008)CrossRef Jonás, A., Zemánek, P.: Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29, 4813–4851 (2008)CrossRef
27.
Zurück zum Zitat Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)CrossRef Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)CrossRef
28.
Zurück zum Zitat Guck, J., Ananthakrishnan, R., Moon, T.J., et al.: Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451–5454 (2000)CrossRef Guck, J., Ananthakrishnan, R., Moon, T.J., et al.: Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451–5454 (2000)CrossRef
29.
Zurück zum Zitat Casner, A., Delville, J.P.: Giant deformations of a liquid-liquid interface induced by the optical radiation pressure. Phys. Rev. Lett. 87, 603–604 (2001)CrossRef Casner, A., Delville, J.P.: Giant deformations of a liquid-liquid interface induced by the optical radiation pressure. Phys. Rev. Lett. 87, 603–604 (2001)CrossRef
30.
Zurück zum Zitat Casner, A., Delville, J.P.: Laser-induced hydrodynamic instability of fluid interfaces. Phys. Rev. Lett. 90, 144503 (2003)CrossRef Casner, A., Delville, J.P.: Laser-induced hydrodynamic instability of fluid interfaces. Phys. Rev. Lett. 90, 144503 (2003)CrossRef
31.
Zurück zum Zitat Schroll, R.D., Wunenburger, R., Casner, A., et al.: Liquid transport due to light scattering. Phys. Rev. Lett. 98, 133601 (2006)CrossRef Schroll, R.D., Wunenburger, R., Casner, A., et al.: Liquid transport due to light scattering. Phys. Rev. Lett. 98, 133601 (2006)CrossRef
32.
Zurück zum Zitat Li, M., Pernice, W.H., Xiong, C., et al.: Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008)CrossRef Li, M., Pernice, W.H., Xiong, C., et al.: Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008)CrossRef
33.
Zurück zum Zitat Pernice, W.H.P., Li, M., Tang, H.X.: Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Opt. Express 17, 1806–1816 (2009)CrossRef Pernice, W.H.P., Li, M., Tang, H.X.: Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate. Opt. Express 17, 1806–1816 (2009)CrossRef
34.
Zurück zum Zitat Povinelli, M.L., Ibanescu, M., Johnson, S.G., et al.: Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide. Appl. Phys. Lett. 85, 1466–1468 (2004)CrossRef Povinelli, M.L., Ibanescu, M., Johnson, S.G., et al.: Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide. Appl. Phys. Lett. 85, 1466–1468 (2004)CrossRef
35.
Zurück zum Zitat Povinelli, M.L., Loncar, M., Ibanescu, M., et al.: Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005)CrossRef Povinelli, M.L., Loncar, M., Ibanescu, M., et al.: Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005)CrossRef
36.
Zurück zum Zitat Ren, M., Huang, J., Cai, H., et al.: Nano-optomechanical actuator and pull-back instability. Acs Nano 7, 1676–1681 (2013)CrossRef Ren, M., Huang, J., Cai, H., et al.: Nano-optomechanical actuator and pull-back instability. Acs Nano 7, 1676–1681 (2013)CrossRef
37.
Zurück zum Zitat Thourhout, D.V., Roels, J.: Optomechanical device actuation through the optical gradient force. Nat. Photonics 4, 211–217 (2010)CrossRef Thourhout, D.V., Roels, J.: Optomechanical device actuation through the optical gradient force. Nat. Photonics 4, 211–217 (2010)CrossRef
38.
Zurück zum Zitat Juodkazis, S., Mukai, N., Wakaki, R., et al.: Reversible phase transitions in polymer gels induced by radiation forces. Nature 408, 178–181 (2000) Juodkazis, S., Mukai, N., Wakaki, R., et al.: Reversible phase transitions in polymer gels induced by radiation forces. Nature 408, 178–181 (2000)
39.
Zurück zum Zitat Gent, A.N.: A New Constitutive Relation for Rubber. Rubber Chem. Technol. 69, 59–61 (2012)CrossRef Gent, A.N.: A New Constitutive Relation for Rubber. Rubber Chem. Technol. 69, 59–61 (2012)CrossRef
40.
Zurück zum Zitat Bai, R., Suo, Z.: Optomechanics of Soft Materials. J. Appl. Mech. 82, 071011 (2015)CrossRef Bai, R., Suo, Z.: Optomechanics of Soft Materials. J. Appl. Mech. 82, 071011 (2015)CrossRef
Metadaten
Titel
Optomechanical soft metamaterials
verfasst von
Xiangjun Peng
Wei He
Yifan Liu
Fengxian Xin
Tian Jian Lu
Publikationsdatum
23.03.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2017
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0657-8

Weitere Artikel der Ausgabe 3/2017

Acta Mechanica Sinica 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.