Skip to main content
Erschienen in: Cellulose 2/2017

30.11.2016 | Original Paper

Cellulose dissolution: insights on the contributions of solvent-induced decrystallization and chain disentanglement

verfasst von: Mohammad Ghasemi, Paschalis Alexandridis, Marina Tsianou

Erschienen in: Cellulose | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dissolution of cellulose is a critical step for the efficient utilization of this renewable resource as a starting material for the synthesis of high value-added functional polymers and chemicals and also for biofuel production. The recalcitrance of semicrystalline cellulose microfibrils presents a major barrier to cellulose dissolution. Despite research efforts, important aspects of cellulose dissolution such as solvent-induced decrystallization and chain disentanglement are not well-understood. Here we address these fundamental issues with the practical goal of gaining insights into the swelling and dissolution of cellulose that cannot be obtained from macroscopic experimental data. To this end, we have used a newly-developed phenomenological model that captures the phenomena governing the dissolution of semicrystalline polymers as well as the thermodynamics and kinetics of dissolution. This model fits well experimental data for swelling and dissolution of cotton fibers in the ionic liquid [bmim]Cl, and allows the quantification of two important aspects, i.e., solvent effectiveness in cellulose (1) decrystallization and (2) chain disentanglement, the balance of which controls the mechanism and kinetics of cellulose dissolution. The activation parameters of cellulose decrystallization, estimated using the obtained decrystallization constant values, reveal that the decrystallization of cellulose in [bmim]Cl is associated with positive enthalpy and entropy and it is also very sensitive to temperature. When the solvent effectiveness in the disruption of cellulose crystals is relatively lower than its ability to disentangle the chains, the kinetics of dissolution are controlled by decrystallization. Furthermore, conditions that facilitate cellulose chain disentanglement, in addition to increasing the rate of dissolution, can result in faster decrystallization. The solvent effectiveness in chain disentanglement is the only factor that determines the decrease of the cellulose fiber radius. In cases where the fiber dissolution rate is lower than the decrystallization rate, the dissolution of cellulose is mostly controlled by the solvent ability to disentangle the chains. The insights obtained from this study improve the understanding of cellulose–solvent interactions underlying decrystallization and disentanglement and their contributions in controlling the kinetics of cellulose swelling and dissolution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17(1):153–160CrossRef Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17(1):153–160CrossRef
Zurück zum Zitat Antoniou E, Alexandridis P (2010) Polymer conformation in mixed aqueous-polar organic solvents. Eur Polym J 46(2):324–335CrossRef Antoniou E, Alexandridis P (2010) Polymer conformation in mixed aqueous-polar organic solvents. Eur Polym J 46(2):324–335CrossRef
Zurück zum Zitat Antoniou E, Buitrago CF, Tsianou M, Alexandridis P (2010) Solvent effects on polysaccharide conformation. Carbohydr Polym 79(2):380–390CrossRef Antoniou E, Buitrago CF, Tsianou M, Alexandridis P (2010) Solvent effects on polysaccharide conformation. Carbohydr Polym 79(2):380–390CrossRef
Zurück zum Zitat Boylston E, Hebert J (1995) The primary wall of cotton fibers. Text Res J 65(7):429–431CrossRef Boylston E, Hebert J (1995) The primary wall of cotton fibers. Text Res J 65(7):429–431CrossRef
Zurück zum Zitat Cai T, Yang G, Zhang H, Shao H, Hu X (2012) A new process for dissolution of cellulose in ionic liquids. Polym Eng Sci 52(8):1708–1714CrossRef Cai T, Yang G, Zhang H, Shao H, Hu X (2012) A new process for dissolution of cellulose in ionic liquids. Polym Eng Sci 52(8):1708–1714CrossRef
Zurück zum Zitat Cao N-J, Xu Q, Chen C-S, Gong CS, Chen LF (1994) Cellulose hydrolysis using zinc chloride as a solvent and catalyst. Appl Biochem Biotechnol 45–46(1):521–530CrossRef Cao N-J, Xu Q, Chen C-S, Gong CS, Chen LF (1994) Cellulose hydrolysis using zinc chloride as a solvent and catalyst. Appl Biochem Biotechnol 45–46(1):521–530CrossRef
Zurück zum Zitat Chen X, Chen J, You T, Wang K, Xu F (2015) Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr Polym 125:85–91CrossRef Chen X, Chen J, You T, Wang K, Xu F (2015) Effects of polymorphs on dissolution of cellulose in NaOH/urea aqueous solution. Carbohydr Polym 125:85–91CrossRef
Zurück zum Zitat Cho HM, Gross AS, Chu J-W (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133(35):14033–14041CrossRef Cho HM, Gross AS, Chu J-W (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133(35):14033–14041CrossRef
Zurück zum Zitat Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part I: free floating cotton and wood fibers in N-methylmorpholine-N-oxide–water mixtures. Macromol Symp 244:1–18CrossRef Cuissinat C, Navard P (2006) Swelling and dissolution of cellulose part I: free floating cotton and wood fibers in N-methylmorpholine-N-oxide–water mixtures. Macromol Symp 244:1–18CrossRef
Zurück zum Zitat El Seoud OA, Fidale LC, Ruiz N, D’Almeida MLO, Frollini E (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15(3):371–392CrossRef El Seoud OA, Fidale LC, Ruiz N, D’Almeida MLO, Frollini E (2008) Cellulose swelling by protic solvents: which properties of the biopolymer and the solvent matter? Cellulose 15(3):371–392CrossRef
Zurück zum Zitat El Seoud OA, Nawaz H, Areas EPG (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313CrossRef El Seoud OA, Nawaz H, Areas EPG (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313CrossRef
Zurück zum Zitat Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromol Chem Phys 209(12):1240–1254CrossRef Fidale LC, Ruiz N, Heinze T, El Seoud OA (2008) Cellulose swelling by aprotic and protic solvents: what are the similarities and differences? Macromol Chem Phys 209(12):1240–1254CrossRef
Zurück zum Zitat Ghasemi M, Singapati AY, Tsianou M, Alexandridis P (2016) Dissolution of semicrystalline polymer fibers: numerical modeling and parametric analysis. Manuscript Ghasemi M, Singapati AY, Tsianou M, Alexandridis P (2016) Dissolution of semicrystalline polymer fibers: numerical modeling and parametric analysis. Manuscript
Zurück zum Zitat Glasser WG, Atalla RH, Blackwell J, Brown MR Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598CrossRef Glasser WG, Atalla RH, Blackwell J, Brown MR Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19(3):589–598CrossRef
Zurück zum Zitat Gross AS, Bell AT, Chu J-W (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14(23):8425–8430CrossRef Gross AS, Bell AT, Chu J-W (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14(23):8425–8430CrossRef
Zurück zum Zitat Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12CrossRef Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12CrossRef
Zurück zum Zitat Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201(6):627–631CrossRef Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201(6):627–631CrossRef
Zurück zum Zitat Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807CrossRef Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807CrossRef
Zurück zum Zitat Horinaka J, Yasuda R, Takigawa T (2011) Entanglement properties of cellulose and amylose in an ionic liquid. J Polym Sci B: Polym Phys 49(13):961–965CrossRef Horinaka J, Yasuda R, Takigawa T (2011) Entanglement properties of cellulose and amylose in an ionic liquid. J Polym Sci B: Polym Phys 49(13):961–965CrossRef
Zurück zum Zitat Hu X-P, Hsieh Y-L (2001) Effects of dehydration on the crystalline structure and strength of developing cotton fibers. Text Res J 71(3):231–239CrossRef Hu X-P, Hsieh Y-L (2001) Effects of dehydration on the crystalline structure and strength of developing cotton fibers. Text Res J 71(3):231–239CrossRef
Zurück zum Zitat Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5(4):309–319CrossRef Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5(4):309–319CrossRef
Zurück zum Zitat Jiang G, Huang W, Zhu T, Zhang C, Kumi A, Zhang Y, Wang H, Hu L (2011) Diffusion dynamics of 1-butyl-3-methylimidazolium chloride from cellulose filament during coagulation process. Cellulose 18(4):921–928CrossRef Jiang G, Huang W, Zhu T, Zhang C, Kumi A, Zhang Y, Wang H, Hu L (2011) Diffusion dynamics of 1-butyl-3-methylimidazolium chloride from cellulose filament during coagulation process. Cellulose 18(4):921–928CrossRef
Zurück zum Zitat Jiang G, Huang W, Wang B, Zhang Y, Wang H (2012) The changes of crystalline structure of cellulose during dissolution in 1-butyl-3-methylimidazolium chloride. Cellulose 19(3):679–685CrossRef Jiang G, Huang W, Wang B, Zhang Y, Wang H (2012) The changes of crystalline structure of cellulose during dissolution in 1-butyl-3-methylimidazolium chloride. Cellulose 19(3):679–685CrossRef
Zurück zum Zitat Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH, Weinheim, Germany, p 260CrossRef Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH, Weinheim, Germany, p 260CrossRef
Zurück zum Zitat Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef
Zurück zum Zitat Kljun A, El-Dessouky HM, Benians TAS, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2014) Analysis of the physical properties of developing cotton fibres. Eur Polym J 51:57–68CrossRef Kljun A, El-Dessouky HM, Benians TAS, Goubet F, Meulewaeter F, Knox JP, Blackburn RS (2014) Analysis of the physical properties of developing cotton fibres. Eur Polym J 51:57–68CrossRef
Zurück zum Zitat Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7(3):307–314CrossRef Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7(3):307–314CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416CrossRef
Zurück zum Zitat Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17(1):31–45CrossRef Le Moigne N, Navard P (2010) Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose 17(1):31–45CrossRef
Zurück zum Zitat Le Moigne N, Spinu M, Heinze T, Navard P (2010a) Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stress. Polymer 51(2):447–453CrossRef Le Moigne N, Spinu M, Heinze T, Navard P (2010a) Restricted dissolution and derivatization capacities of cellulose fibres under uniaxial elongational stress. Polymer 51(2):447–453CrossRef
Zurück zum Zitat Le Moigne N, Jardeby K, Navard P (2010b) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79(2):325–332CrossRef Le Moigne N, Jardeby K, Navard P (2010b) Structural changes and alkaline solubility of wood cellulose fibers after enzymatic peeling treatment. Carbohydr Polym 79(2):325–332CrossRef
Zurück zum Zitat Lewin M (2010) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton Lewin M (2010) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton
Zurück zum Zitat Liebert T (2010) Cellulose solvents—remarkable history, bright future. ACS Symp Ser 1033:3–54CrossRef Liebert T (2010) Cellulose solvents—remarkable history, bright future. ACS Symp Ser 1033:3–54CrossRef
Zurück zum Zitat Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114(12):4293–4301CrossRef Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114(12):4293–4301CrossRef
Zurück zum Zitat Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115(44):12801–12808CrossRef Lu A, Liu Y, Zhang L, Potthast A (2011) Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B 115(44):12801–12808CrossRef
Zurück zum Zitat Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2(1):1–22 Mantanis GI, Young RA, Rowell RM (1995) Swelling of compressed cellulose fiber webs in organic liquids. Cellulose 2(1):1–22
Zurück zum Zitat Marson GA, El Seoud OA (1999) Cellulose dissolution in lithium chloride/N, N-dimethylacetamide solvent system: relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. J Polym Sci A: Polym Chem 37(19):3738–3744CrossRef Marson GA, El Seoud OA (1999) Cellulose dissolution in lithium chloride/N, N-dimethylacetamide solvent system: relevance of kinetics of decrystallization to cellulose derivatization under homogeneous solution conditions. J Polym Sci A: Polym Chem 37(19):3738–3744CrossRef
Zurück zum Zitat Maxwell JM, Gordon SG, Huson MG (2003) Internal structure of mature and immature cotton fibers revealed by scanning probe microscopy. Text Res J 73(11):1005–1012CrossRef Maxwell JM, Gordon SG, Huson MG (2003) Internal structure of mature and immature cotton fibers revealed by scanning probe microscopy. Text Res J 73(11):1005–1012CrossRef
Zurück zum Zitat Mazeau K (2011) On the external morphology of native cellulose microfibrils. Carbohydr Polym 84(1):524–532CrossRef Mazeau K (2011) On the external morphology of native cellulose microfibrils. Carbohydr Polym 84(1):524–532CrossRef
Zurück zum Zitat Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: From solvents to mechanisms. Curr Opin Colloid Interface Sci 19(1):32–40CrossRef Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: From solvents to mechanisms. Curr Opin Colloid Interface Sci 19(1):32–40CrossRef
Zurück zum Zitat Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587CrossRef Medronho B, Romano A, Miguel MG, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19(3):581–587CrossRef
Zurück zum Zitat Mikkola J-P, Kirilin A, Tuuf J-C, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9(11):1229–1237CrossRef Mikkola J-P, Kirilin A, Tuuf J-C, Pranovich A, Holmbom B, Kustov LM, Murzin DY, Salmi T (2007) Ultrasound enhancement of cellulose processing in ionic liquids: from dissolution towards functionalization. Green Chem 9(11):1229–1237CrossRef
Zurück zum Zitat Morgenstern B, Kammer HW, Berger W, Skrabal P (1992) 7Li-NMR study on cellulose/LiCl/N,N-dimethylacetamide solutions. Acta Polym. 43(6):356–357CrossRef Morgenstern B, Kammer HW, Berger W, Skrabal P (1992) 7Li-NMR study on cellulose/LiCl/N,N-dimethylacetamide solutions. Acta Polym. 43(6):356–357CrossRef
Zurück zum Zitat Narasimhan B, Peppas NA (1996) Disentanglement and reptation during dissolution of rubbery polymers. J Polym Sci B: Polym Phys 34(5):947–961CrossRef Narasimhan B, Peppas NA (1996) Disentanglement and reptation during dissolution of rubbery polymers. J Polym Sci B: Polym Phys 34(5):947–961CrossRef
Zurück zum Zitat Nevell TP, Zeronian SH (1985) Cellulose chemistry and its applications. Halsted Press, Wiley, New York, p 552 Nevell TP, Zeronian SH (1985) Cellulose chemistry and its applications. Halsted Press, Wiley, New York, p 552
Zurück zum Zitat Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249CrossRef Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249CrossRef
Zurück zum Zitat Olsson C, Westman G (2013) Direct dissolution of cellulose: background, means and applications. In: van de Ven TGM, Godbout L (eds) Cellulose—fundamental aspects, chap 6. InTech, pp 143–178 Olsson C, Westman G (2013) Direct dissolution of cellulose: background, means and applications. In: van de Ven TGM, Godbout L (eds) Cellulose—fundamental aspects, chap 6. InTech, pp 143–178
Zurück zum Zitat Östlund Å, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10(9):2401–2407CrossRef Östlund Å, Lundberg D, Nordstierna L, Holmberg K, Nydén M (2009) Dissolution and gelation of cellulose in TBAF/DMSO solutions: the roles of fluoride ions and water. Biomacromolecules 10(9):2401–2407CrossRef
Zurück zum Zitat Papanu JS, Soane DS, Bell AT, Hess DW (1989) Transport models for swelling and dissolution of thin polymer-films. J Appl Polym Sci 38(5):859–885CrossRef Papanu JS, Soane DS, Bell AT, Hess DW (1989) Transport models for swelling and dissolution of thin polymer-films. J Appl Polym Sci 38(5):859–885CrossRef
Zurück zum Zitat Parviainen H, Parviainen A, Virtanen T, Kilpeläinen I, Ahvenainen P, Serimaa R, Grönqvist S, Maloney T, Maunu SL (2014) Dissolution enthalpies of cellulose in ionic liquids. Carbohydr Polym 113:67–76CrossRef Parviainen H, Parviainen A, Virtanen T, Kilpeläinen I, Ahvenainen P, Serimaa R, Grönqvist S, Maloney T, Maunu SL (2014) Dissolution enthalpies of cellulose in ionic liquids. Carbohydr Polym 113:67–76CrossRef
Zurück zum Zitat Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRef Pinkert A, Marsh KN, Pang SS, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109(12):6712–6728CrossRef
Zurück zum Zitat Pinkert A, Marsh KN, Pang S (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49(22):11121–11130CrossRef Pinkert A, Marsh KN, Pang S (2010) Reflections on the solubility of cellulose. Ind Eng Chem Res 49(22):11121–11130CrossRef
Zurück zum Zitat Rabideau BD, Agarwal A, Ismail AE (2013) Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations. J Phys Chem B 117(13):3469–3479CrossRef Rabideau BD, Agarwal A, Ismail AE (2013) Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations. J Phys Chem B 117(13):3469–3479CrossRef
Zurück zum Zitat Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules 6(5):2638–2647CrossRef Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supramolecular structure and physicochemical properties of cellulose on its dissolution in a lithium chloride/N,N-dimethylacetamide solvent system. Biomacromolecules 6(5):2638–2647CrossRef
Zurück zum Zitat Ramos LA, Morgado DL, Gessner F, Frollini E, El Seoud OA (2011) A physical organic chemistry approach to dissolution of cellulose: effects of cellulose mercerization on its properties and on the kinetics of its decrystallization. Arkivoc 7:416–425 Ramos LA, Morgado DL, Gessner F, Frollini E, El Seoud OA (2011) A physical organic chemistry approach to dissolution of cellulose: effects of cellulose mercerization on its properties and on the kinetics of its decrystallization. Arkivoc 7:416–425
Zurück zum Zitat Ruan Y-L, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13(1):47–60 Ruan Y-L, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13(1):47–60
Zurück zum Zitat Ruch F (1966) Birefringence and dichroism of cells and tissues. In: Pollister AW (ed) Physical techniques in biological research, vol 3, part A: cells and tissues, chap 2. Academic Press, New York, pp 57–86 Ruch F (1966) Birefringence and dichroism of cells and tissues. In: Pollister AW (ed) Physical techniques in biological research, vol 3, part A: cells and tissues, chap 2. Academic Press, New York, pp 57–86
Zurück zum Zitat Schlufter K, Schmauder H-P, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676CrossRef Schlufter K, Schmauder H-P, Dorn S, Heinze T (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol Rapid Commun 27(19):1670–1676CrossRef
Zurück zum Zitat Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2–3):139–157CrossRef Siepmann J, Peppas NA (2001) Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48(2–3):139–157CrossRef
Zurück zum Zitat Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert W (1998) Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. J Polym Sci A: Polym Chem 36(11):1945–1955CrossRef Spange S, Reuter A, Vilsmeier E, Heinze T, Keutel D, Linert W (1998) Determination of empirical polarity parameters of the cellulose solvent N,N-dimethylacetamide/LiCl by means of the solvatochromic technique. J Polym Sci A: Polym Chem 36(11):1945–1955CrossRef
Zurück zum Zitat Wang Y, Deng Y (2009) The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnol Bioeng 102(5):1398–1405CrossRef Wang Y, Deng Y (2009) The kinetics of cellulose dissolution in sodium hydroxide solution at low temperatures. Biotechnol Bioeng 102(5):1398–1405CrossRef
Zurück zum Zitat Wang Z, Yokoyama T, Chang H-M, Matsumoto Y (2009) Dissolution of beech and spruce milled woods in LiCl/DMSO. J Agric Food Chem 57(14):6167–6170CrossRef Wang Z, Yokoyama T, Chang H-M, Matsumoto Y (2009) Dissolution of beech and spruce milled woods in LiCl/DMSO. J Agric Food Chem 57(14):6167–6170CrossRef
Zurück zum Zitat Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41(4):1519–1537CrossRef Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41(4):1519–1537CrossRef
Zurück zum Zitat Wertz J-L, Bédué O, Mercier JP (2010) Cellulose science and technology. EPFL Press, Lausanne, p 350 Wertz J-L, Bédué O, Mercier JP (2010) Cellulose science and technology. EPFL Press, Lausanne, p 350
Zurück zum Zitat Willison JHM, Brown RM Jr (1977) An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92(1–2):21–41CrossRef Willison JHM, Brown RM Jr (1977) An examination of the developing cotton fiber: wall and plasmalemma. Protoplasma 92(1–2):21–41CrossRef
Zurück zum Zitat Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21(3):1183–1192CrossRef Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21(3):1183–1192CrossRef
Zurück zum Zitat Zhang LN, Ruan D, Gao SJ (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B: Polym Phys 40(14):1521–1529CrossRef Zhang LN, Ruan D, Gao SJ (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B: Polym Phys 40(14):1521–1529CrossRef
Zurück zum Zitat Zhang S, Wang W-C, Li F-X, Yu J-Y (2013) Swelling and dissolution of cellulose in NaOH aqueous solvent systems. Cellul Chem Technol 47:671–679 Zhang S, Wang W-C, Li F-X, Yu J-Y (2013) Swelling and dissolution of cellulose in NaOH aqueous solvent systems. Cellul Chem Technol 47:671–679
Metadaten
Titel
Cellulose dissolution: insights on the contributions of solvent-induced decrystallization and chain disentanglement
verfasst von
Mohammad Ghasemi
Paschalis Alexandridis
Marina Tsianou
Publikationsdatum
30.11.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2017
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-1145-1

Weitere Artikel der Ausgabe 2/2017

Cellulose 2/2017 Zur Ausgabe