Skip to main content
Erschienen in: Cellulose 5/2019

01.02.2019 | Original Research

Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly(butylene succinate) based composites

verfasst von: Canqing Wu, Xuzhen Zhang, Xiuhua Wang, Qingwen Gao, Xinan Li

Erschienen in: Cellulose | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanocrystals (CNCs) extracted from microcrystalline cellulose, were modified by succinic anhydride to give succinic CNCs (SCNCs). Successful surface modification of SCNCs was confirmed by results of FTIR, FE-SEM, contact angle measurement and dispersity test, and SCNCs were then subjected to melt blending with poly(butylene succinate) (PBS) to prepare nanocomposites. Meanwhile, PBS/CNC nanocomposites were also prepared through same procedure as references. The morphology, thermal and mechanical properties and crystallization properties of PBS/SCNC nanocomposites with increasing SCNCs content from 0 to 7 wt% were investigated. PBS/SCNC nanocomposites exhibit better thermal stability than that of PBS/CNCs, which is mainly ascribed to less sulfate groups on CNC surfaces and more hydrogen bond effects between PBS carbonyl groups and ester groups from SCNCs. Young’s modulus and yield strength of PBS/SCNCs are higher than that of PBS/CNC nanocomposites, which is primarily attributed to the homogeneous dispersion of SCNCs in PBS matrix, confirmed by FE-SEM images. This work is valuable for design of PBS-based nanocomposites with enhanced thermal and mechanical properties.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Angellier H, Molinaboisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 28(38):9161–9170CrossRef Angellier H, Molinaboisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 28(38):9161–9170CrossRef
Zurück zum Zitat Aontee A, Sutapun W (2013) Effect of blend ratio on phase morphology and mechanical properties of high density polyethylene and poly (butylene succinate) blend. In: The international conference on multi-functional materials and structures, pp 555–559 Aontee A, Sutapun W (2013) Effect of blend ratio on phase morphology and mechanical properties of high density polyethylene and poly (butylene succinate) blend. In: The international conference on multi-functional materials and structures, pp 555–559
Zurück zum Zitat Avolio R, Graziano V, Pereira YDF, Cocca M, Gentile G, Errico ME, Ambrogi V, Avella M (2015) Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites. Carbohydr Polym 133:408–420CrossRefPubMed Avolio R, Graziano V, Pereira YDF, Cocca M, Gentile G, Errico ME, Ambrogi V, Avella M (2015) Effect of cellulose structure and morphology on the properties of poly(butylene succinate-co-butylene adipate) biocomposites. Carbohydr Polym 133:408–420CrossRefPubMed
Zurück zum Zitat Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2014) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310CrossRef Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2014) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310CrossRef
Zurück zum Zitat Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13(7):2013–2019CrossRefPubMed Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13(7):2013–2019CrossRefPubMed
Zurück zum Zitat Chen S, Cheng L, Huang H, Zou F, Zhao HP (2017) Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos A Appl Sci Manuf 95:125–131CrossRef Chen S, Cheng L, Huang H, Zou F, Zhao HP (2017) Fabrication and properties of poly(butylene succinate) biocomposites reinforced by waste silkworm silk fabric. Compos A Appl Sci Manuf 95:125–131CrossRef
Zurück zum Zitat Content M (1997) Standard test methods of testing cellulose acetate propionate and cellulose acetate. ASTM, West Conshohocken Content M (1997) Standard test methods of testing cellulose acetate propionate and cellulose acetate. ASTM, West Conshohocken
Zurück zum Zitat Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93(1):207–215CrossRefPubMed Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V (2013) Oxidized cellulose—survey of the most recent achievements. Carbohydr Polym 93(1):207–215CrossRefPubMed
Zurück zum Zitat Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49(10):3144–3154CrossRef Espino-Pérez E, Bras J, Ducruet V, Guinault A, Dufresne A, Domenek S (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49(10):3144–3154CrossRef
Zurück zum Zitat Flores ED, Funabashi M, Kunioka M (2009) Mechanical properties and biomass carbon ratios of poly(butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer. J Appl Polym Sci 112(6):3410–3417CrossRef Flores ED, Funabashi M, Kunioka M (2009) Mechanical properties and biomass carbon ratios of poly(butylene succinate) composites filled with starch and cellulose filler using furfural as plasticizer. J Appl Polym Sci 112(6):3410–3417CrossRef
Zurück zum Zitat Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Development and thermal behaviour of ternary PLA matrix composites. Polym Degrad Stab 95(11):2200–2206CrossRef Fortunati E, Armentano I, Iannoni A, Kenny JM (2010) Development and thermal behaviour of ternary PLA matrix composites. Polym Degrad Stab 95(11):2200–2206CrossRef
Zurück zum Zitat Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956CrossRefPubMed Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956CrossRefPubMed
Zurück zum Zitat Fujisawa S, Okita Y, Saito T, Togawa E, Isogai A (2011) Formation of N-acylureas on the surface of TEMPO-oxidized cellulose nanofibril with carbodiimide in DMF. Cellulose 18(5):1191–1199CrossRef Fujisawa S, Okita Y, Saito T, Togawa E, Isogai A (2011) Formation of N-acylureas on the surface of TEMPO-oxidized cellulose nanofibril with carbodiimide in DMF. Cellulose 18(5):1191–1199CrossRef
Zurück zum Zitat Glova AD, Falkovich SG, Larin SV, Mezhenskaia DA, Lukasheva NV, Nazarychev VM, Tolmachev DA, Mercurieva AA, Kenny JM, Lyulin SV (2016) Poly(lactic acid)-based nanocomposites filled with cellulose nanocrystals with modified surface: all-atom molecular dynamics simulations. Polym Int 65(8):892–898CrossRef Glova AD, Falkovich SG, Larin SV, Mezhenskaia DA, Lukasheva NV, Nazarychev VM, Tolmachev DA, Mercurieva AA, Kenny JM, Lyulin SV (2016) Poly(lactic acid)-based nanocomposites filled with cellulose nanocrystals with modified surface: all-atom molecular dynamics simulations. Polym Int 65(8):892–898CrossRef
Zurück zum Zitat Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402 Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402
Zurück zum Zitat Hashaikeh R, Krishnamachari P, Samad Y (2015) Nanomanifestations of cellulose: applications for biodegradable composites. Springer, Berlin Hashaikeh R, Krishnamachari P, Samad Y (2015) Nanomanifestations of cellulose: applications for biodegradable composites. Springer, Berlin
Zurück zum Zitat Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208–215CrossRefPubMed Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208–215CrossRefPubMed
Zurück zum Zitat Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir ACS J Surf Colloids 26(23):17919–17925CrossRef Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir ACS J Surf Colloids 26(23):17919–17925CrossRef
Zurück zum Zitat Jiménez A, Ruseckaite RA (2007) Binary mixtures based on polycaprolactone and cellulose derivatives. J Therm Anal Calorim 88(3):851–856CrossRef Jiménez A, Ruseckaite RA (2007) Binary mixtures based on polycaprolactone and cellulose derivatives. J Therm Anal Calorim 88(3):851–856CrossRef
Zurück zum Zitat Li Y, Fu Q, Ming W, Zeng J (2017) Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym 164:75CrossRefPubMed Li Y, Fu Q, Ming W, Zeng J (2017) Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym 164:75CrossRefPubMed
Zurück zum Zitat Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115(6):3559–3567CrossRef Liang Z, Pan P, Zhu B, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115(6):3559–3567CrossRef
Zurück zum Zitat Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos 36(7):1335–1345CrossRef Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Compos 36(7):1335–1345CrossRef
Zurück zum Zitat Likittheerakarn S, Kurdpradid S, Smittipornpun N, Sritapunya T (2017) Comparison of mechanical properties of biocomposites between polybutylene succinate/corn silk and polybutylene succinate/cellulose extracted from corn silk. Key Eng Mater 737:275–280CrossRef Likittheerakarn S, Kurdpradid S, Smittipornpun N, Sritapunya T (2017) Comparison of mechanical properties of biocomposites between polybutylene succinate/corn silk and polybutylene succinate/cellulose extracted from corn silk. Key Eng Mater 737:275–280CrossRef
Zurück zum Zitat Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6(10):5384–5393CrossRefPubMed Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6(10):5384–5393CrossRefPubMed
Zurück zum Zitat Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83(4):1834–1842CrossRef Lin N, Huang J, Chang PR, Feng J, Yu J (2011) Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr Polym 83(4):1834–1842CrossRef
Zurück zum Zitat Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289CrossRef Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289CrossRef
Zurück zum Zitat Miao C, Hamad WY (2016) Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer 101:338–346CrossRef Miao C, Hamad WY (2016) Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer 101:338–346CrossRef
Zurück zum Zitat Miyata T, Masuko T (1998) Crystallization behaviour of poly(tetramethylene succinate). Polymer 39(6–7):1399–1404CrossRef Miyata T, Masuko T (1998) Crystallization behaviour of poly(tetramethylene succinate). Polymer 39(6–7):1399–1404CrossRef
Zurück zum Zitat Motte HDL, Hasani M, Brelid H, Westman G (2011) Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR. Carbohydr Polym 85(4):738–746CrossRef Motte HDL, Hasani M, Brelid H, Westman G (2011) Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR. Carbohydr Polym 85(4):738–746CrossRef
Zurück zum Zitat Nagalakshmaiah M, El Kissi N, Dufresne A (2016) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8(13):8755–8764CrossRefPubMed Nagalakshmaiah M, El Kissi N, Dufresne A (2016) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8(13):8755–8764CrossRefPubMed
Zurück zum Zitat Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRef Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501CrossRef
Zurück zum Zitat Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRef Ng HM, Sin LT, Tee TT, Bee ST, Hui D, Low CY, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos B Eng 75:176–200CrossRef
Zurück zum Zitat Ogawa K, Hirai I, Shimasaki C, Yoshimura T, Ono S, Rengakuji S, Nakamura Y, Yamazaki I (1999) Simple determination method of degree of substitution for starch acetate. Bull Chem Soc Jpn 72(12):2785–2790CrossRef Ogawa K, Hirai I, Shimasaki C, Yoshimura T, Ono S, Rengakuji S, Nakamura Y, Yamazaki I (1999) Simple determination method of degree of substitution for starch acetate. Bull Chem Soc Jpn 72(12):2785–2790CrossRef
Zurück zum Zitat Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 46(26):12081–12092CrossRef Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 46(26):12081–12092CrossRef
Zurück zum Zitat Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1):248–258CrossRef Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membr Sci 320(1):248–258CrossRef
Zurück zum Zitat Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365CrossRef Pinheiro IF, Ferreira FV, Souza DHS, Gouveia RF, Lona LMF, Morales AR, Mei LHI (2017) Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. Eur Polym J 97:356–365CrossRef
Zurück zum Zitat Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77(4):813–820CrossRef Poaty B, Vardanyan V, Wilczak L, Chauve G, Riedl B (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Org Coat 77(4):813–820CrossRef
Zurück zum Zitat Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr., Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefPubMed Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr., Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311(5760):484–489CrossRefPubMed
Zurück zum Zitat Shang W, Huang J, Luo H, Chang PR, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190CrossRef Shang W, Huang J, Luo H, Chang PR, Feng J, Xie G (2013) Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil. Cellulose 20(1):179–190CrossRef
Zurück zum Zitat Silverio HA, Neto WPF, Dantas ON, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44(2):427–436CrossRef Silverio HA, Neto WPF, Dantas ON, Pasquini D (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44(2):427–436CrossRef
Zurück zum Zitat Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclère P, Raquez JM, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRef Spinella S, Re GL, Liu B, Dorgan J, Habibi Y, Leclère P, Raquez JM, Dubois P, Gross RA (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17CrossRef
Zurück zum Zitat Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRef Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRef
Zurück zum Zitat Vahik K, Pochan D (2004) Unusual crystallization behavior of organoclay reinforced poly(l-lactic acid) nanocomposites. Macromolecules 37(17):6480–6491CrossRef Vahik K, Pochan D (2004) Unusual crystallization behavior of organoclay reinforced poly(l-lactic acid) nanocomposites. Macromolecules 37(17):6480–6491CrossRef
Zurück zum Zitat Xue MD, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRef Xue MD, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32CrossRef
Zurück zum Zitat Zeng RT, Hu W, Wang M, Zhang SD, Zeng JB (2016) Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly(butylene succinate) nanocomposites with low percolation threshold. Polym Test 50:182–190CrossRef Zeng RT, Hu W, Wang M, Zhang SD, Zeng JB (2016) Morphology, rheological and crystallization behavior in non-covalently functionalized carbon nanotube reinforced poly(butylene succinate) nanocomposites with low percolation threshold. Polym Test 50:182–190CrossRef
Zurück zum Zitat Zhang X, Yong Z (2016) Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 140:374–382CrossRefPubMed Zhang X, Yong Z (2016) Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Carbohydr Polym 140:374–382CrossRefPubMed
Zurück zum Zitat Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of poly(butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91(2):22–29CrossRef Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of poly(butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91(2):22–29CrossRef
Zurück zum Zitat Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018a) Enhancing mechanical properties of poly(lactic acid) through its in situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind Crops Prod 112:449–459CrossRef Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018a) Enhancing mechanical properties of poly(lactic acid) through its in situ crosslinking with maleic anhydride-modified cellulose nanocrystals from cottonseed hulls. Ind Crops Prod 112:449–459CrossRef
Zurück zum Zitat Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018b) Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: enhancing thermal stability and hydrophobic property. Carbohydr Polym 189:331–341CrossRefPubMed Zhou L, He H, Li MC, Huang S, Mei C, Wu Q (2018b) Grafting polycaprolactone diol onto cellulose nanocrystals via click chemistry: enhancing thermal stability and hydrophobic property. Carbohydr Polym 189:331–341CrossRefPubMed
Zurück zum Zitat Zhu B, Li J, He Y, Osanai Y, Matsumura S, Inoue Y (2003) Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin. Green Chem 5(5):580–586CrossRef Zhu B, Li J, He Y, Osanai Y, Matsumura S, Inoue Y (2003) Thermal and infrared spectroscopic studies on hydrogen-bonding interaction of biodegradable poly(3-hydroxybutyrate)s with natural polyphenol catechin. Green Chem 5(5):580–586CrossRef
Metadaten
Titel
Surface modification of cellulose nanocrystal using succinic anhydride and its effects on poly(butylene succinate) based composites
verfasst von
Canqing Wu
Xuzhen Zhang
Xiuhua Wang
Qingwen Gao
Xinan Li
Publikationsdatum
01.02.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 5/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02292-5

Weitere Artikel der Ausgabe 5/2019

Cellulose 5/2019 Zur Ausgabe