Skip to main content
Erschienen in: Technology, Knowledge and Learning 3/2017

28.07.2017 | Original research

Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education

verfasst von: Woonhee Sung, Junghyun Ahn, John B. Black

Erschienen in: Technology, Knowledge and Learning | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A science, technology, engineering, and mathematics-influenced classroom requires learning activities that provide hands-on experiences with technological tools to encourage problem-solving skills (Brophy et al. in J Eng Educ 97(3):369–387, 2008; Matarić et al. in AAAI spring symposium on robots and robot venues: resources for AI education, pp 99–102, 2007). The study aimed to bring computational thinking, an applicable skill set in computer science, into existing mathematics and programming education in elementary classrooms. An essential component of computational thinking is the ability to think like a computer scientist when confronted with a problem (Grover and Pea in Educ Res 42(1):38–43. doi:10.​3102/​0013189X12463051​, 2013). Computational perspectives (Berland and Wilensky in J Sci Educ Technol 24(5):628–647. doi:10.​1007/​s10956-015-9552-x, 2015) refer to the frame of reference programmers or computer scientists adopt when approaching a problem. The study examined the effects of taking computational perspectives through various degrees of embodied activities (i.e., full vs. low) on students’ achievement in mathematics and programming. The study employed a 2 (full vs. low embodiment) × 2 (with vs. without computational perspective taking) factorial condition to evaluate four learning conditions from a combination of embodiment and computational perspective-taking practice. The results from this experimental study (N = 66 kindergarten and first graders) suggest that full-embody activities combined with the practice of computational perspective-taking in solving mathematics problem improved mathematics understanding and programming skills as demonstrated in Scrath Jr. among novice young learners. Moreover, the practice of using a computational perspective significantly improved students’ understanding of core programming concepts regardless of the level of embodiment. The article includes recommendations for how to make the computational thinking process more concrete and relevant within the context of a standard curriculum, particularly mathematics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abrahamson, D., & Howison, M. (2010). Embodied artifacts: coordinated action as an object-to-think with. Denver, CO: In annual meeting of the American Educational Research Association. Abrahamson, D., & Howison, M. (2010). Embodied artifacts: coordinated action as an object-to-think with. Denver, CO: In annual meeting of the American Educational Research Association.
Zurück zum Zitat Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 358–376). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139519526.022.CrossRef Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (2nd ed., pp. 358–376). Cambridge: Cambridge University Press. doi:10.​1017/​CBO9781139519526​.​022.CrossRef
Zurück zum Zitat Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: Signifying sensorimotor enactment in fields of promoted action. ZDM Mathematics Education, 47(2), 295–306.CrossRef Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: Signifying sensorimotor enactment in fields of promoted action. ZDM Mathematics Education, 47(2), 295–306.CrossRef
Zurück zum Zitat Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63–71. Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6(1), 63–71.
Zurück zum Zitat Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., & Ruppert, J. A. (2003). Social embodiment. Psychology of Learning and Motivation, 43, 43–92.CrossRef Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., & Ruppert, J. A. (2003). Social embodiment. Psychology of Learning and Motivation, 43, 43–92.CrossRef
Zurück zum Zitat Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628–647. doi:10.1007/s10956-015-9552-x.CrossRef Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628–647. doi:10.​1007/​s10956-015-9552-x.CrossRef
Zurück zum Zitat Bers, M. U. (2008). Using robotic manipulatives to develop technological fluency in early childhood. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on science and technology in early childhood education, LAP 105–225. Greenwich, CT: Information Age Publishing Inc. Bers, M. U. (2008). Using robotic manipulatives to develop technological fluency in early childhood. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on science and technology in early childhood education, LAP 105–225. Greenwich, CT: Information Age Publishing Inc.
Zurück zum Zitat Black, J. B., Segal, A., Vitale, J., & Fadjo, C. (2012). Embodied cognition and learning environment design. Theoretical Foundations of Learning Environments, 2, 198–223. Black, J. B., Segal, A., Vitale, J., & Fadjo, C. (2012). Embodied cognition and learning environment design. Theoretical Foundations of Learning Environments, 2, 198–223.
Zurück zum Zitat Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031.CrossRef Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031.CrossRef
Zurück zum Zitat Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369–387.CrossRef Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97(3), 369–387.CrossRef
Zurück zum Zitat Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in the middle school classroom. Journal of Media Literacy Education, 4(2), 121–135. Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in the middle school classroom. Journal of Media Literacy Education, 4(2), 121–135.
Zurück zum Zitat Chan, M. S., & Black, J. B. (2006). Direct-manipulation animation: Incorporating the haptic channel in the learning process to support middle school students in science learning and mental model acquisition. In Proceedings of the 7th International Conference on Learning Sciences (pp. 64–70). Bloomington, IN. Chan, M. S., & Black, J. B. (2006). Direct-manipulation animation: Incorporating the haptic channel in the learning process to support middle school students in science learning and mental model acquisition. In Proceedings of the 7th International Conference on Learning Sciences (pp. 64–70). Bloomington, IN.
Zurück zum Zitat Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment. Journal for Research in Mathematics Education, 20(5), 450–467.CrossRef Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment. Journal for Research in Mathematics Education, 20(5), 450–467.CrossRef
Zurück zum Zitat Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition. Journal of Educational Psychology, 76(6), 1051–1058.CrossRef Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition. Journal of Educational Psychology, 76(6), 1051–1058.CrossRef
Zurück zum Zitat Clements, D. H., & Sarama, J. (2002). The role of technology in early childhood learning. Teaching Children Mathematics, 8(6), 340–343. Clements, D. H., & Sarama, J. (2002). The role of technology in early childhood learning. Teaching Children Mathematics, 8(6), 340–343.
Zurück zum Zitat Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87(3), 215–251.CrossRef Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87(3), 215–251.CrossRef
Zurück zum Zitat Fadjo, C. L. (2012). Developing Computational Thinking through Grounded Embodied Cognition (Unpublished doctoral dissertation). Columbia University, NY. Fadjo, C. L. (2012). Developing Computational Thinking through Grounded Embodied Cognition (Unpublished doctoral dissertation). Columbia University, NY.
Zurück zum Zitat Fadjo, C. L., Hallman Jr., G., Harris, R., & Black, J. B. (2009). Surrogate embodiment, mathematics instruction and video game programming. Paper presented at the World Conference on Educational Media and Technology, Honolulu, HI. http://www.editlib.org/p/31876. Fadjo, C. L., Hallman Jr., G., Harris, R., & Black, J. B. (2009). Surrogate embodiment, mathematics instruction and video game programming. Paper presented at the World Conference on Educational Media and Technology, Honolulu, HI. http://​www.​editlib.​org/​p/​31876.
Zurück zum Zitat Fadjo, C., Lu, M., & Black, J. B. (2009). Instructional embodiment and video game programming in an after school program. Paper presented at the World Conference on Educational Media and Technology, Honolulu, HI. http://www.editlib.org/p/32064. Fadjo, C., Lu, M., & Black, J. B. (2009). Instructional embodiment and video game programming in an after school program. Paper presented at the World Conference on Educational Media and Technology, Honolulu, HI. http://​www.​editlib.​org/​p/​32064.
Zurück zum Zitat Glenberg, A. M. (2008). Toward the integration of bodily states, language, and action. In G. R. Semin & E. R. Smith (Eds.), Embodied grounding: Social, cognitive, affective, and neuroscientific approaches (pp. 43–70). New York: Cambridge University Press.CrossRef Glenberg, A. M. (2008). Toward the integration of bodily states, language, and action. In G. R. Semin & E. R. Smith (Eds.), Embodied grounding: Social, cognitive, affective, and neuroscientific approaches (pp. 43–70). New York: Cambridge University Press.CrossRef
Zurück zum Zitat Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), 586–596. Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews: Cognitive Science, 1(4), 586–596.
Zurück zum Zitat Hallman, G., Paley, I., Han, I., & Black, J. (2009). Possibilities of haptic feedback simulation for physics learning. In Proceedings of world conference on educational multimedia, hypermedia and telecommunications (pp. 3597–3602). Honolulu, HI. Hallman, G., Paley, I., Han, I., & Black, J. (2009). Possibilities of haptic feedback simulation for physics learning. In Proceedings of world conference on educational multimedia, hypermedia and telecommunications (pp. 3597–3602). Honolulu, HI.
Zurück zum Zitat Huang, S. C., Vea, T., & Black, J. (2011). Learning classic mechanics with embodied cognition. In Proceedings of world conference on e-learning in corporate, government, healthcare, and higher education (pp. 209–215). Chesapeake, VA. Huang, S. C., Vea, T., & Black, J. (2011). Learning classic mechanics with embodied cognition. In Proceedings of world conference on e-learning in corporate, government, healthcare, and higher education (pp. 209–215). Chesapeake, VA.
Zurück zum Zitat Hughes, M., & Macleod, H. (1986). Using logo with very young children. In R. Lawler, B. du Boulay, M. Hughes, & H. Macleod (Eds.), Cognition and computers: Studies in learning (pp. 179–219). Chichester: Ellis Horwood. Hughes, M., & Macleod, H. (1986). Using logo with very young children. In R. Lawler, B. du Boulay, M. Hughes, & H. Macleod (Eds.), Cognition and computers: Studies in learning (pp. 179–219). Chichester: Ellis Horwood.
Zurück zum Zitat Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative embodied learning in mixed reality motion-capture environments: Two science studies. Journal of Educational Psychology, 106(1), 86–104.CrossRef Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative embodied learning in mixed reality motion-capture environments: Two science studies. Journal of Educational Psychology, 106(1), 86–104.CrossRef
Zurück zum Zitat Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The impact on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371–391. Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The impact on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371–391.
Zurück zum Zitat Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recursive logo programs. Journal of Educational Computing Research, 1(2), 235–243.CrossRef Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recursive logo programs. Journal of Educational Computing Research, 1(2), 235–243.CrossRef
Zurück zum Zitat Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basic Books. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York: Basic Books.
Zurück zum Zitat Lindgren, R. (2014). Getting into the cue: Embracing technology-facilitated body movements as a starting point for learning. In V. R. Lee (Ed.), Learning technologies and the body: Integration and implementation in formal and informal environment (pp. 39–54). New York, NY: Routledge. Lindgren, R. (2014). Getting into the cue: Embracing technology-facilitated body movements as a starting point for learning. In V. R. Lee (Ed.), Learning technologies and the body: Integration and implementation in formal and informal environment (pp. 39–54). New York, NY: Routledge.
Zurück zum Zitat Matarić, M. J., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and STEM education. In AAAI spring symposium on robots and robot venues: Resources for AI education (pp. 99–102). Stanford, CA. Matarić, M. J., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and STEM education. In AAAI spring symposium on robots and robot venues: Resources for AI education (pp. 99–102). Stanford, CA.
Zurück zum Zitat National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
Zurück zum Zitat Papert, S. (1972). Teaching children thinking. Programmed Learning and Educational Technology, 9(5), 245–255. Papert, S. (1972). Teaching children thinking. Programmed Learning and Educational Technology, 9(5), 245–255.
Zurück zum Zitat Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books Inc. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books Inc.
Zurück zum Zitat Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New Ideas in Psychology, 2(2), 137–168.CrossRef Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New Ideas in Psychology, 2(2), 137–168.CrossRef
Zurück zum Zitat Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.CrossRef Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.CrossRef
Zurück zum Zitat Robinson, M. A., & Uhlig, G. E. (1988). The effects of guided discovery Logo instruction on mathematical readiness and visual motor development in first grade students. Journal of Human Behavior and Learning, 5, 1–13. Robinson, M. A., & Uhlig, G. E. (1988). The effects of guided discovery Logo instruction on mathematical readiness and visual motor development in first grade students. Journal of Human Behavior and Learning, 5, 1–13.
Zurück zum Zitat Schwartz, D. L., & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20(4), 457–497.CrossRef Schwartz, D. L., & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20(4), 457–497.CrossRef
Zurück zum Zitat Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250.CrossRef Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–250.CrossRef
Zurück zum Zitat Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.CrossRef Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.CrossRef
Metadaten
Titel
Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education
verfasst von
Woonhee Sung
Junghyun Ahn
John B. Black
Publikationsdatum
28.07.2017
Verlag
Springer Netherlands
Erschienen in
Technology, Knowledge and Learning / Ausgabe 3/2017
Print ISSN: 2211-1662
Elektronische ISSN: 2211-1670
DOI
https://doi.org/10.1007/s10758-017-9328-x

Weitere Artikel der Ausgabe 3/2017

Technology, Knowledge and Learning 3/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.