Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2014

01.04.2014

A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells

verfasst von: Theodore Vo, Joël Tabak, Richard Bertram, Martin Wechselberger

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrical activity of endocrine pituitary cells is mediated by a plethora of ionic currents and establishing the role of a single channel type is difficult. Experimental observations have shown however that fast-activating voltage- and calcium-dependent potassium (BK) current tends to promote bursting in pituitary cells. This burst promoting effect requires fast activation of the BK current, otherwise it is inhibitory to bursting. In this work, we analyze a pituitary cell model in order to answer the question of why the BK activation must be fast to promote bursting. We also examine how the interplay between the activation rate and conductance of the BK current shapes the bursting activity. We use the multiple timescale structure of the model to our advantage and employ geometric singular perturbation theory to demonstrate the origin of the bursting behaviour. In particular, we show that the bursting can arise from either canard dynamics or slow passage through a dynamic Hopf bifurcation. We then compare our theoretical predictions with experimental data using the dynamic clamp technique and find that the data is consistent with a burst mechanism due to a slow passage through a Hopf.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We do not draw the bursting/plateau boundary since in AUTO, there seems to be no way of distinguishing between these two types of trajectories.
 
2
We point out that for our model equations, det J| S and tr J| S are both independent of the calcium variable c.
 
3
Folded nodes have a sector of canards (the funnel). Folded saddles have precisely two canards (tangent to the eigendirections of the folded saddle) and folded foci have no canards.
 
4
In the classic slow-fast approach to bursting, the criticality of the fast subsystem Hopf differentiates between plateau and pseudo-plateau bursting. Plateau (pseudo-plateau) bursts are associated with supercritical (subcritical) Hopf bifurcations of the layer problem. For further details, we refer to Stern et al. (2008), Osinga and Tsaneva-Atanasova (2010), Tsaneva-Atanasova et al. (2010), Teka et al. (2011).
 
5
Variations in r have no effect on the singular canards since they are associated with the slow subsystem and r is only present in the fast subsystem.
 
6
In our case, the homoclinic associated with the BT bifurcation has no influence on the full system dynamics.
 
7
The BT bifurcation is a codimension 2 bifurcation. The reason we are able to draw a curve of BT bifurcations is that detJ| S and tr J| S are both independent of c
 
Literatur
Zurück zum Zitat Baer, S.M, Erneux, T, Rinzel, J (1989). The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM Journal on Applied Mathematics, 49, 55–71.CrossRef Baer, S.M, Erneux, T, Rinzel, J (1989). The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM Journal on Applied Mathematics, 49, 55–71.CrossRef
Zurück zum Zitat Berglund, N, Gentz, B, Kuehn, C (2012). Hunting french ducks in a noisy environment. Journal of Differential Equations, 252, 4786–4841.CrossRef Berglund, N, Gentz, B, Kuehn, C (2012). Hunting french ducks in a noisy environment. Journal of Differential Equations, 252, 4786–4841.CrossRef
Zurück zum Zitat Bertram, R, & Sherman, A. (2005) Negative calcium feedback: the road from chay-keizer. In S. Coombes, & P. Bresslof (Eds.), The genesis of rhythm in the nervous system (pp. 19–48). New Jersey: World Scientific.CrossRef Bertram, R, & Sherman, A. (2005) Negative calcium feedback: the road from chay-keizer. In S. Coombes, & P. Bresslof (Eds.), The genesis of rhythm in the nervous system (pp. 19–48). New Jersey: World Scientific.CrossRef
Zurück zum Zitat Bertram, R, Butte, M.J, Kiemel, T, Sherman, A (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57, 413–439.PubMedCrossRef Bertram, R, Butte, M.J, Kiemel, T, Sherman, A (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57, 413–439.PubMedCrossRef
Zurück zum Zitat Brøns, M, Krupa, M, Wechselberger, M (2006). Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49, 39–63. Brøns, M, Krupa, M, Wechselberger, M (2006). Mixed mode oscillations due to the generalized canard phenomenon. Fields Institute Communications, 49, 39–63.
Zurück zum Zitat Brøns, M, Kaper, T.J, Rotstein, H.G. (2008). Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. Chaos, 18, 015–101.CrossRef Brøns, M, Kaper, T.J, Rotstein, H.G. (2008). Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. Chaos, 18, 015–101.CrossRef
Zurück zum Zitat Chiba, H (2011). Periodic orbits and chaos in fast-slow systems with bogdanov-takens type fold points. Journal of Differential Equations, 250, 112–160.CrossRef Chiba, H (2011). Periodic orbits and chaos in fast-slow systems with bogdanov-takens type fold points. Journal of Differential Equations, 250, 112–160.CrossRef
Zurück zum Zitat Del Negro, C.A, Hsiao, C.F, Chandler, S.H (1999). Outward currents influencing bursting dynamics in guinea pig trigeminal motoneurons. Journal of Neurophysiology, 81, 1478–1485.PubMed Del Negro, C.A, Hsiao, C.F, Chandler, S.H (1999). Outward currents influencing bursting dynamics in guinea pig trigeminal motoneurons. Journal of Neurophysiology, 81, 1478–1485.PubMed
Zurück zum Zitat Desroches, M, Guckenheimer, J, Krauskopf, B, Kuehn, C, Osinga, H.M, Wechselberger, M (2012). Mixed-mode oscillations with multiple time scales. SIAM Review, 54, 211–288.CrossRef Desroches, M, Guckenheimer, J, Krauskopf, B, Kuehn, C, Osinga, H.M, Wechselberger, M (2012). Mixed-mode oscillations with multiple time scales. SIAM Review, 54, 211–288.CrossRef
Zurück zum Zitat Doedel, E.J (1981). AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congressus Numerantum, 30, 265–284. Doedel, E.J (1981). AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congressus Numerantum, 30, 265–284.
Zurück zum Zitat Doedel, E.J, Champneys, A.R, Fairgrieve, T.F, Kuznetsov, Y.A, Oldeman, K.E, Paffenroth, R.C, Sanstede, B, Wang, X.J, Zhang, C (2009). AUTO-07P: continuation and bifurcation software for ordinary differential equations. Available from: http://cmvl.cs.concordia.ca/. Doedel, E.J, Champneys, A.R, Fairgrieve, T.F, Kuznetsov, Y.A, Oldeman, K.E, Paffenroth, R.C, Sanstede, B, Wang, X.J, Zhang, C (2009). AUTO-07P: continuation and bifurcation software for ordinary differential equations. Available from: http://​cmvl.​cs.​concordia.​ca/​.
Zurück zum Zitat Dorodnitsyn, A.A. (1947). Asymptotic solution of the van der pol equation. Proceedings of the Institute of Mechanics of the Academy of Science of the USSR XI. Dorodnitsyn, A.A. (1947). Asymptotic solution of the van der pol equation. Proceedings of the Institute of Mechanics of the Academy of Science of the USSR XI.
Zurück zum Zitat Erchova, I., & McGonigle, D.J. (2008). Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos, 18, 015–115.CrossRef Erchova, I., & McGonigle, D.J. (2008). Rhythms of the brain: an examination of mixed mode oscillation approaches to the analysis of neurophysiological data. Chaos, 18, 015–115.CrossRef
Zurück zum Zitat Ermentrout, B, & Wechselberger, M (2009). Canards, clusters, and synchronization in a weakly coupled interneuron model. SIAM Journal of Applied Dynamical Systems, 8, 253–278.CrossRef Ermentrout, B, & Wechselberger, M (2009). Canards, clusters, and synchronization in a weakly coupled interneuron model. SIAM Journal of Applied Dynamical Systems, 8, 253–278.CrossRef
Zurück zum Zitat Ermentrout, G.B, & Terman, D.H. (2010). Mathematical Foundations of Neuroscience: Springer. Ermentrout, G.B, & Terman, D.H. (2010). Mathematical Foundations of Neuroscience: Springer.
Zurück zum Zitat Fakler, B, & Adelman, J.P (2008). Control of K(Ca) channels by calcium nano/microdomains. Neuron, 59, 873–881.PubMedCrossRef Fakler, B, & Adelman, J.P (2008). Control of K(Ca) channels by calcium nano/microdomains. Neuron, 59, 873–881.PubMedCrossRef
Zurück zum Zitat Fenichel, N (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53–98.CrossRef Fenichel, N (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53–98.CrossRef
Zurück zum Zitat Golubitsky, M, Josic, K, Kaper, T.J. (2001). An unfolding theory approach to bursting in fast-slow systems. In H.W. Broer, B. Krauskopf, G. Vegter (Eds.), Global analysis of dynamical systems (pp. 277–308). Bristol: Institute of Physics Publishing. Golubitsky, M, Josic, K, Kaper, T.J. (2001). An unfolding theory approach to bursting in fast-slow systems. In H.W. Broer, B. Krauskopf, G. Vegter (Eds.), Global analysis of dynamical systems (pp. 277–308). Bristol: Institute of Physics Publishing.
Zurück zum Zitat Grasman, J. (1987). Asymptotic methods for relaxation oscillations and applications. NY: Springer-Verlag.CrossRef Grasman, J. (1987). Asymptotic methods for relaxation oscillations and applications. NY: Springer-Verlag.CrossRef
Zurück zum Zitat Harvey, E, Kirk, V, Wechselberger, M, Sneyd, J (2011). Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics. Journal of Nonlinear Science, 21, 639–683.CrossRef Harvey, E, Kirk, V, Wechselberger, M, Sneyd, J (2011). Multiple timescales, mixed mode oscillations and canards in models of intracellular calcium dynamics. Journal of Nonlinear Science, 21, 639–683.CrossRef
Zurück zum Zitat Izhikevich, E.M (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.CrossRef Izhikevich, E.M (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.CrossRef
Zurück zum Zitat Izhikevich, E.M. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge: The MIT Press. Izhikevich, E.M. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge: The MIT Press.
Zurück zum Zitat Jones, C.K.R.T. (1995) In R. Johnson (Ed.), Dynamical systems. Lecture notes in mathematics (Vol. 1609, pp. 44–120). New York: Springer. Jones, C.K.R.T. (1995) In R. Johnson (Ed.), Dynamical systems. Lecture notes in mathematics (Vol. 1609, pp. 44–120). New York: Springer.
Zurück zum Zitat Kuehn, C (2011). A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D, 240, 1020–1035.CrossRef Kuehn, C (2011). A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Physica D, 240, 1020–1035.CrossRef
Zurück zum Zitat Latorre, R, & Brauchi, S (2006). Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biological Research, 39, 385–401.PubMedCrossRef Latorre, R, & Brauchi, S (2006). Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage. Biological Research, 39, 385–401.PubMedCrossRef
Zurück zum Zitat LeBeau, A.P, Robson, A.B, McKinnon, A.E, Sneyd, J (1998). Analysis of a reduced model of corticotroph action potentials. Journal of Theoretical Biology, 192, 319–339.PubMedCrossRef LeBeau, A.P, Robson, A.B, McKinnon, A.E, Sneyd, J (1998). Analysis of a reduced model of corticotroph action potentials. Journal of Theoretical Biology, 192, 319–339.PubMedCrossRef
Zurück zum Zitat Miranda, P, de la Peña, P, Gómez-Varela, D, Barros, F (2003). Role of BK potassium channels shaping action potentials and the associated Ca\(^{2+}_{i}\) oscillations in GH 3 rat anterior pituitary cells. Neuroendocrinology, 77, 162–176.PubMedCrossRef Miranda, P, de la Peña, P, Gómez-Varela, D, Barros, F (2003). Role of BK potassium channels shaping action potentials and the associated Ca\(^{2+}_{i}\) oscillations in GH 3 rat anterior pituitary cells. Neuroendocrinology, 77, 162–176.PubMedCrossRef
Zurück zum Zitat Mishchenko, E.F, & Rozov, N.K (1980). Differential equations with small parameters and relaxation oscillations. Plenum (Translated from Russian). Mishchenko, E.F, & Rozov, N.K (1980). Differential equations with small parameters and relaxation oscillations. Plenum (Translated from Russian).
Zurück zum Zitat Mishchenko, E.F, Kolesov, Y.S, Kolesov, A.Y, Rhozov, N.K. (1994). Monographs in contemporary mathematics. New York: Consultants Bureau. Mishchenko, E.F, Kolesov, Y.S, Kolesov, A.Y, Rhozov, N.K. (1994). Monographs in contemporary mathematics. New York: Consultants Bureau.
Zurück zum Zitat Neishtadt, A.I (1987). Persistence of stability loss for dynamical bifurcations. I. Differential Equations, 23, 1385–1391. Neishtadt, A.I (1987). Persistence of stability loss for dynamical bifurcations. I. Differential Equations, 23, 1385–1391.
Zurück zum Zitat Neishtadt, A.I (1988). Persistence of stability loss for dynamical bifurcations. II. Differential Equations, 24, 171–176. Neishtadt, A.I (1988). Persistence of stability loss for dynamical bifurcations. II. Differential Equations, 24, 171–176.
Zurück zum Zitat Nowacki, J, Mazlan, S, Osinga, H.M, Tsaneva-Atanasova, K (2010). The role of large-conductance calcium-activated K + (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D, 239, 485–493.CrossRef Nowacki, J, Mazlan, S, Osinga, H.M, Tsaneva-Atanasova, K (2010). The role of large-conductance calcium-activated K + (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D, 239, 485–493.CrossRef
Zurück zum Zitat Osinga, H.M, & Tsaneva-Atanasova, K (2010). Dynamics of plateau bursting depending on the location of its equilibrium. Journal of Neuroendocrinology, 22, 1301–1314.PubMedCrossRef Osinga, H.M, & Tsaneva-Atanasova, K (2010). Dynamics of plateau bursting depending on the location of its equilibrium. Journal of Neuroendocrinology, 22, 1301–1314.PubMedCrossRef
Zurück zum Zitat Rinzel, J (1985). Bursting oscillations in an excitable membrane model. In Lecture notes in mathematics (Vol. 1151, pp. 304–316). Rinzel, J (1985). Bursting oscillations in an excitable membrane model. In Lecture notes in mathematics (Vol. 1151, pp. 304–316).
Zurück zum Zitat Rotstein, H, Wechselberger, M, Kopell, N (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM Journal of Applied Dynamical Systems, 7, 1582–1611.CrossRef Rotstein, H, Wechselberger, M, Kopell, N (2008). Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM Journal of Applied Dynamical Systems, 7, 1582–1611.CrossRef
Zurück zum Zitat Rubin, J, & Terman, D (2002). Geometric singular perturbation analysis of neuronal dynamics. In B. Fiedler (Ed.), Handbook of dynamical systems (Vol. 2, pp. 93–146). Elsevier. Rubin, J, & Terman, D (2002). Geometric singular perturbation analysis of neuronal dynamics. In B. Fiedler (Ed.), Handbook of dynamical systems (Vol. 2, pp. 93–146). Elsevier.
Zurück zum Zitat Rubin, J, & Wechselberger, M (2008). The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Chaos, 18, 015–105.CrossRef Rubin, J, & Wechselberger, M (2008). The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Chaos, 18, 015–105.CrossRef
Zurück zum Zitat Safiulina, V.F, Zacchi, P, Taglialatela, M, Yaari, Y, Cherubini, E (2008). Low expression of kv7/m channels facilitates intrinsic and network bursting in the developing rat hippocampus. Journal of Physiology, 586, 5437–5453.PubMedCentralPubMedCrossRef Safiulina, V.F, Zacchi, P, Taglialatela, M, Yaari, Y, Cherubini, E (2008). Low expression of kv7/m channels facilitates intrinsic and network bursting in the developing rat hippocampus. Journal of Physiology, 586, 5437–5453.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sah, P, & Faber, E.S (2002). Channels underlying neuronal calcium-activated potassium currents. Progress in Neurobiology, 66, 345–353.PubMedCrossRef Sah, P, & Faber, E.S (2002). Channels underlying neuronal calcium-activated potassium currents. Progress in Neurobiology, 66, 345–353.PubMedCrossRef
Zurück zum Zitat Sharp, A.A, Neil, M.B.O, Abbott, L.F, Marder, E (1993). Dynamic clamp – computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed Sharp, A.A, Neil, M.B.O, Abbott, L.F, Marder, E (1993). Dynamic clamp – computer-generated conductances in real neurons. Journal of Neurophysiology, 69, 992–995.PubMed
Zurück zum Zitat Sherman, A, Keizer, J, Rinzel, J (1990). Domain model for Ca2+-inactivation of Ca 2+ channels at low channel density. Biophysical Journal, 58, 985–995.PubMedCentralPubMedCrossRef Sherman, A, Keizer, J, Rinzel, J (1990). Domain model for Ca2+-inactivation of Ca 2+ channels at low channel density. Biophysical Journal, 58, 985–995.PubMedCentralPubMedCrossRef
Zurück zum Zitat Stern, J.V, Osinga, H.M, LeBeau, A, Sherman, A (2008). Resetting behavior in a model of bursting in secretory pituitary cells: distinguishing plateaus from pseudo-plateaus. Bulletin of Mathematical Biology, 70, 68–88.PubMedCrossRef Stern, J.V, Osinga, H.M, LeBeau, A, Sherman, A (2008). Resetting behavior in a model of bursting in secretory pituitary cells: distinguishing plateaus from pseudo-plateaus. Bulletin of Mathematical Biology, 70, 68–88.PubMedCrossRef
Zurück zum Zitat Stojilkovic, S.S, Zemkova, H, Goor, F.V (2005). Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends In Endocrinology and Metabolism, 16, 152–159.PubMedCrossRef Stojilkovic, S.S, Zemkova, H, Goor, F.V (2005). Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends In Endocrinology and Metabolism, 16, 152–159.PubMedCrossRef
Zurück zum Zitat Szmolyan, P, & Wechselberger, M (2004). Relaxation oscillations in ℝ3. Journal of Differential Equations, 200, 69–104.CrossRef Szmolyan, P, & Wechselberger, M (2004). Relaxation oscillations in ℝ3. Journal of Differential Equations, 200, 69–104.CrossRef
Zurück zum Zitat Tabak, J, Tomaiuolo, M, Gonzalez-Iglesias, A.E, Milescu, L.S, Bertram, R (2011). Fast-activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study. Journal of Neuroscience, 31, 16,855–16,863.CrossRef Tabak, J, Tomaiuolo, M, Gonzalez-Iglesias, A.E, Milescu, L.S, Bertram, R (2011). Fast-activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: a dynamic clamp study. Journal of Neuroscience, 31, 16,855–16,863.CrossRef
Zurück zum Zitat Teka, W, Tabak, J, Vo, T, Wechselberger, M, Bertram, R (2011). The dynamics underlying pseudo-plateau bursting in a pituitary cell model. Journal of Mathematical Neuroscience, 1(12). Teka, W, Tabak, J, Vo, T, Wechselberger, M, Bertram, R (2011). The dynamics underlying pseudo-plateau bursting in a pituitary cell model. Journal of Mathematical Neuroscience, 1(12).
Zurück zum Zitat Teka, W, Tsaneva-Atanasova, K, Bertram, R, Tabak, J (2011). From plateau to pseudo-plateau bursting: Making the transition. Bulletin of Mathematical Biology, 73, 1292–1311.PubMedCentralPubMedCrossRef Teka, W, Tsaneva-Atanasova, K, Bertram, R, Tabak, J (2011). From plateau to pseudo-plateau bursting: Making the transition. Bulletin of Mathematical Biology, 73, 1292–1311.PubMedCentralPubMedCrossRef
Zurück zum Zitat Terman, D (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics, 51, 1418–1450.CrossRef Terman, D (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics, 51, 1418–1450.CrossRef
Zurück zum Zitat Tsaneva-Atanasova, K, Sherman, A, Goor, F.V, Stojilkovic, S.S (2007). Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. Journal of Neurophysiology, 98, 131–144.PubMedCrossRef Tsaneva-Atanasova, K, Sherman, A, Goor, F.V, Stojilkovic, S.S (2007). Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. Journal of Neurophysiology, 98, 131–144.PubMedCrossRef
Zurück zum Zitat Tsaneva-Atanasova, K, Osinga, H.M, Rieb, T, Sherman, A (2010). Full system bifurcation analysis of endocrine bursting models. Journal of Theoretical Biology, 264, 1133–1146.PubMedCentralPubMedCrossRef Tsaneva-Atanasova, K, Osinga, H.M, Rieb, T, Sherman, A (2010). Full system bifurcation analysis of endocrine bursting models. Journal of Theoretical Biology, 264, 1133–1146.PubMedCentralPubMedCrossRef
Zurück zum Zitat Van Goor, F, Zivadinovic, D, Martinez-Fuentes, A.J, Stojilkovic, S.S (2001). Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell-type specific action potential secretion coupling. Journal of Biological Chemistry, 276, 33,840–33,846.CrossRef Van Goor, F, Zivadinovic, D, Martinez-Fuentes, A.J, Stojilkovic, S.S (2001). Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell-type specific action potential secretion coupling. Journal of Biological Chemistry, 276, 33,840–33,846.CrossRef
Zurück zum Zitat Vo, T, Bertram, R, Tabak, J, Wechselberger, M (2010). Mixed mode oscillations as a mechanism for pseudo-plateau bursting. Journal of Computational Neuroscience, 28, 443–458.PubMedCentralPubMedCrossRef Vo, T, Bertram, R, Tabak, J, Wechselberger, M (2010). Mixed mode oscillations as a mechanism for pseudo-plateau bursting. Journal of Computational Neuroscience, 28, 443–458.PubMedCentralPubMedCrossRef
Zurück zum Zitat Vo, T., Bertram, R., Wechselberger, M. (2012). Multiple geometric viewpoints of mixed mode dynamics. SIAM Journal of Applied Dynamical Systems, 12, 789-830.CrossRef Vo, T., Bertram, R., Wechselberger, M. (2012). Multiple geometric viewpoints of mixed mode dynamics. SIAM Journal of Applied Dynamical Systems, 12, 789-830.CrossRef
Zurück zum Zitat Wechselberger, M (2005). Existence and bifurcation of canards in ℝ3 in the case of a folded node. SIAM Journal of Dynamic Systems, 4, 101–139.CrossRef Wechselberger, M (2005). Existence and bifurcation of canards in ℝ3 in the case of a folded node. SIAM Journal of Dynamic Systems, 4, 101–139.CrossRef
Zurück zum Zitat Wechselberger, M (2012). Apropos canards. Transactions of the American Mathematical Society, 364, 3289–3309.CrossRef Wechselberger, M (2012). Apropos canards. Transactions of the American Mathematical Society, 364, 3289–3309.CrossRef
Zurück zum Zitat Wechselberger, M, & Weckesser, W (2009). Bifurcations of mixed-mode oscillations in a stellate cell model. Physica D, 238, 1598–1614.CrossRef Wechselberger, M, & Weckesser, W (2009). Bifurcations of mixed-mode oscillations in a stellate cell model. Physica D, 238, 1598–1614.CrossRef
Metadaten
Titel
A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells
verfasst von
Theodore Vo
Joël Tabak
Richard Bertram
Martin Wechselberger
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0470-8

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Neuroscience 2/2014 Zur Ausgabe

Premium Partner