Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 5/2023

12.03.2022

Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review

verfasst von: Danil Yu Pimenov, Andres Bustillo, Szymon Wojciechowski, Vishal S. Sharma, Munish K. Gupta, Mustafa Kuntoğlu

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The wear of cutting tools, cutting force determination, surface roughness variations and other machining responses are of keen interest to latest researchers. The variations of these machining responses results in change in dimensional accuracy and productivity upto great extent. In addition, an excessive increase in wear leads to catastrophic consequences, exceeding the tool breakage. Therefore, this article discusses the online trend of modern approaches in tool condition monitoring while different machining operations. For this purpose, the effective use of new sensors and artificial intelligence (AI) is considered and followed during this holistic review work. The sensor systems used for monitoring tool wear are dynamometers, accelerometers, acoustic emission sensors, current and power sensors, image sensors, other sensors. These systems allow to solve the problem of automation and modeling of technological parameters of the main types of cutting, such as turning, milling, drilling and grinding. The modern artificial intelligence methods are considered, such as: Neural networks, Image recognition, Fuzzy logic, Adaptive neuro-fuzzy inference systems, Bayesian Networks, Support vector machine, Ensembles, Decision and regression trees, k-nearest neighbors, Artificial Neural Network, Markov model, Singular Spectrum Analysis, Genetic algorithms. Discussions also includes the main advantages, disadvantages and prospects of using various AI methods for tool wear monitoring. Moreover, the problems and future directions of the main processing methods using AI models are also highlighted.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43, 707–720.CrossRef Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43, 707–720.CrossRef
Zurück zum Zitat Ahmad, M. I., Yusof, Y., Daud, M. E., Latiff, K., Abdul Kadir, A. Z., & Saif, Y. (2020). Machine monitoring system: a decade in review. The International Journal of Advanced Manufacturing Technology, 108, 3645–3659.CrossRef Ahmad, M. I., Yusof, Y., Daud, M. E., Latiff, K., Abdul Kadir, A. Z., & Saif, Y. (2020). Machine monitoring system: a decade in review. The International Journal of Advanced Manufacturing Technology, 108, 3645–3659.CrossRef
Zurück zum Zitat Ahmed, Y. S., Alam, M. S., Arif, A. F. M., & Veldhuis, S. C. (2019). Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning. International Journal of Advanced Manufacturing Technology, 103, 2257–2276.CrossRef Ahmed, Y. S., Alam, M. S., Arif, A. F. M., & Veldhuis, S. C. (2019). Use of acoustic emission and cutting force signals to monitor built-up edge formation in stainless steel turning. International Journal of Advanced Manufacturing Technology, 103, 2257–2276.CrossRef
Zurück zum Zitat Ai, Y., Jiang, P., Shao, X., Wang, C., Li, P., Mi, G., et al. (2016). An optimization method for defects reduction in fiber laser keyhole welding. Applied Physics A, 122, 31.CrossRef Ai, Y., Jiang, P., Shao, X., Wang, C., Li, P., Mi, G., et al. (2016). An optimization method for defects reduction in fiber laser keyhole welding. Applied Physics A, 122, 31.CrossRef
Zurück zum Zitat Ai, Y., Shao, X., Jiang, P., Li, P., Liu, Y., & Yue, C. (2015). Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Applied Physics A, 121, 555–569.CrossRef Ai, Y., Shao, X., Jiang, P., Li, P., Liu, Y., & Yue, C. (2015). Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials. Applied Physics A, 121, 555–569.CrossRef
Zurück zum Zitat Akkoyun, F., Ercetin, A., Aslantas, K., Pimenov, D. Y., Giasin, K., Lakshmikanthan, A., et al. (2021). Measurement of micro burr and slot widths through image processing: comparison of manual and automated measurements in micro-milling. Sensors, 21, 4432.CrossRef Akkoyun, F., Ercetin, A., Aslantas, K., Pimenov, D. Y., Giasin, K., Lakshmikanthan, A., et al. (2021). Measurement of micro burr and slot widths through image processing: comparison of manual and automated measurements in micro-milling. Sensors, 21, 4432.CrossRef
Zurück zum Zitat Alegre, E., Alaiz-Rodríguez, R., Barreiro, J., & Ruiz, J. (2009). Use of contour signatures and classification methods to optimize the tool life in metal machining. Estonian Journal of Engineering, 15, 3.CrossRef Alegre, E., Alaiz-Rodríguez, R., Barreiro, J., & Ruiz, J. (2009). Use of contour signatures and classification methods to optimize the tool life in metal machining. Estonian Journal of Engineering, 15, 3.CrossRef
Zurück zum Zitat Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23, 539–546.CrossRef Aliustaoglu, C., Ertunc, H. M., & Ocak, H. (2009). Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system. Mechanical Systems and Signal Processing, 23, 539–546.CrossRef
Zurück zum Zitat Alonso, F. J., & Salgado, D. R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical Systems and Signal Processing, 22, 735–748.CrossRef Alonso, F. J., & Salgado, D. R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical Systems and Signal Processing, 22, 735–748.CrossRef
Zurück zum Zitat Ambadekar, P. K., & Choudhari, C. M. (2020). CNN based tool monitoring system to predict life of cutting tool. SN Applied Sciences, 2(5), 1–11.CrossRef Ambadekar, P. K., & Choudhari, C. M. (2020). CNN based tool monitoring system to predict life of cutting tool. SN Applied Sciences, 2(5), 1–11.CrossRef
Zurück zum Zitat Ambhore, N., Kamble, D., Chinchanikar, S., & Wayal, V. (2015). Tool condition monitoring system: A review. Materials Today Proceedings, 2, 3419–3428.CrossRef Ambhore, N., Kamble, D., Chinchanikar, S., & Wayal, V. (2015). Tool condition monitoring system: A review. Materials Today Proceedings, 2, 3419–3428.CrossRef
Zurück zum Zitat An, Q., Tao, Z., Xu, X., El Mansori, M., & Chen, M. (2020). A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement, 154, 107461.CrossRef An, Q., Tao, Z., Xu, X., El Mansori, M., & Chen, M. (2020). A data-driven model for milling tool remaining useful life prediction with convolutional and stacked LSTM network. Measurement, 154, 107461.CrossRef
Zurück zum Zitat Arriandiaga, A., Portillo, E., Sánchez, J. A., Cabanes, I., & Pombo, I. (2014). Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process. Sensors, 14, 8756–8778.CrossRef Arriandiaga, A., Portillo, E., Sánchez, J. A., Cabanes, I., & Pombo, I. (2014). Virtual sensors for on-line wheel wear and part roughness measurement in the grinding process. Sensors, 14, 8756–8778.CrossRef
Zurück zum Zitat Axinte, D., & Gindy, N. (2004). Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. International Journal of Production Research, 42, 2679–2691.CrossRef Axinte, D., & Gindy, N. (2004). Assessment of the effectiveness of a spindle power signal for tool condition monitoring in machining processes. International Journal of Production Research, 42, 2679–2691.CrossRef
Zurück zum Zitat Balazinski, M., Czogala, E., Jemielniak, K., & Leski, J. (2002). Tool condition monitoring using artificial intelligence methods. Engineering Applications of Artificial Intelligence, 15, 73–80.CrossRef Balazinski, M., Czogala, E., Jemielniak, K., & Leski, J. (2002). Tool condition monitoring using artificial intelligence methods. Engineering Applications of Artificial Intelligence, 15, 73–80.CrossRef
Zurück zum Zitat Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf, 18, 343–354.CrossRef Benardos, P. G., & Vosniakos, G. C. (2002). Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf, 18, 343–354.CrossRef
Zurück zum Zitat Bhattacharyya, P., Sengupta, D., Mukhopadhyay, S., & Chattopadhyay, A. B. (2008). On-line tool condition monitoring in face milling using current and power signals. International Journal of Production Research, 46, 1187–1201.CrossRef Bhattacharyya, P., Sengupta, D., Mukhopadhyay, S., & Chattopadhyay, A. B. (2008). On-line tool condition monitoring in face milling using current and power signals. International Journal of Production Research, 46, 1187–1201.CrossRef
Zurück zum Zitat Bhuiyan, M. S. H., & Choudhury, I. A. (2014). Review of sensor applications in tool condition monitoring in machining. Comprehensive Materials Processing, 13, 539–569.CrossRef Bhuiyan, M. S. H., & Choudhury, I. A. (2014). Review of sensor applications in tool condition monitoring in machining. Comprehensive Materials Processing, 13, 539–569.CrossRef
Zurück zum Zitat Binsaeid, S., Asfour, S., Cho, S., & Onar, A. (2009). Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion. Journal of Materials Processing Technology, 209, 4728–4738.CrossRef Binsaeid, S., Asfour, S., Cho, S., & Onar, A. (2009). Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion. Journal of Materials Processing Technology, 209, 4728–4738.CrossRef
Zurück zum Zitat Brito, L. C., da Silva, M. B., & Duarte, M. A. V. (2021). Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data. Journal of Intelligent Manufacturing, 32, 127–140.CrossRef Brito, L. C., da Silva, M. B., & Duarte, M. A. V. (2021). Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data. Journal of Intelligent Manufacturing, 32, 127–140.CrossRef
Zurück zum Zitat Bustillo, A., Díez-Pastor, J.-F., Quintana, G., & García-Osorio, C. (2011). Avoiding neural network fine tuning by using ensemble learning: Application to ball-end milling operations. International Journal of Advanced Manufacturing Technology, 57, 521.CrossRef Bustillo, A., Díez-Pastor, J.-F., Quintana, G., & García-Osorio, C. (2011). Avoiding neural network fine tuning by using ensemble learning: Application to ball-end milling operations. International Journal of Advanced Manufacturing Technology, 57, 521.CrossRef
Zurück zum Zitat Bustillo, A., Pimenov, D. Y., Matuszewski, M., & Mikolajczyk, T. (2018). Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot Comput Integr Manuf, 53, 215–227.CrossRef Bustillo, A., Pimenov, D. Y., Matuszewski, M., & Mikolajczyk, T. (2018). Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot Comput Integr Manuf, 53, 215–227.CrossRef
Zurück zum Zitat Bustillo, A., Pimenov, D. Y., Mia, M., & Kapłonek, W. (2021). Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. Journal of Intelligent Manufacturing, 32, 895–912.CrossRef Bustillo, A., Pimenov, D. Y., Mia, M., & Kapłonek, W. (2021). Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth. Journal of Intelligent Manufacturing, 32, 895–912.CrossRef
Zurück zum Zitat Bustillo, A., Reis, R., Machado, A. R., & Pimenov, D. Y. (2020). Improving the accuracy of machine-learning models with data from machine test repetitions. Journal of Intelligent Manufacturing, 2020, 1–19. Bustillo, A., Reis, R., Machado, A. R., & Pimenov, D. Y. (2020). Improving the accuracy of machine-learning models with data from machine test repetitions. Journal of Intelligent Manufacturing, 2020, 1–19.
Zurück zum Zitat Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., & Teti, R. (1995). Tool condition monitoring (TCM)—The status of research and industrial application. CIRP Annals, 44, 541–567.CrossRef Byrne, G., Dornfeld, D., Inasaki, I., Ketteler, G., König, W., & Teti, R. (1995). Tool condition monitoring (TCM)—The status of research and industrial application. CIRP Annals, 44, 541–567.CrossRef
Zurück zum Zitat Caggiano, A. (2018). Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors, 18, 823.CrossRef Caggiano, A. (2018). Tool wear prediction in Ti-6Al-4V machining through multiple sensor monitoring and PCA features pattern recognition. Sensors, 18, 823.CrossRef
Zurück zum Zitat Cai, W., Zhang, W., Hu, X., & Liu, Y. (2020). A hybrid information model based on long short-term memory network for tool condition monitoring. Journal of Intelligent Manufacturing, 31, 1497–1510.CrossRef Cai, W., Zhang, W., Hu, X., & Liu, Y. (2020). A hybrid information model based on long short-term memory network for tool condition monitoring. Journal of Intelligent Manufacturing, 31, 1497–1510.CrossRef
Zurück zum Zitat Chen, N., Hao, B., Guo, Y., Li, L., Khan, M. A., & He, N. (2020). Research on tool wear monitoring in drilling process based on APSO-LS-SVM approach. The International Journal of Advanced Manufacturing Technology, 108, 2091–2101.CrossRef Chen, N., Hao, B., Guo, Y., Li, L., Khan, M. A., & He, N. (2020). Research on tool wear monitoring in drilling process based on APSO-LS-SVM approach. The International Journal of Advanced Manufacturing Technology, 108, 2091–2101.CrossRef
Zurück zum Zitat Chen, Y., Jin, Y., & Jiri, G. (2018). Predicting tool wear with multi-sensor data using deep belief networks. International Journal of Advanced Manufacturing Technology, 99, 1917–1926.CrossRef Chen, Y., Jin, Y., & Jiri, G. (2018). Predicting tool wear with multi-sensor data using deep belief networks. International Journal of Advanced Manufacturing Technology, 99, 1917–1926.CrossRef
Zurück zum Zitat Cheng, M., Jiao, L., Yan, P., Jiang, H., Wang, R., Qiu, T., et al. (2022). Intelligent tool wear monitoring and multi-step prediction based on deep learning model. Journal of Manufacturing Systems, 62, 286–300.CrossRef Cheng, M., Jiao, L., Yan, P., Jiang, H., Wang, R., Qiu, T., et al. (2022). Intelligent tool wear monitoring and multi-step prediction based on deep learning model. Journal of Manufacturing Systems, 62, 286–300.CrossRef
Zurück zum Zitat Choudhury, S. K., Jain, V. K., & Rao, C. V. V. R. (1999). On-line monitoring of tool wear in turning using a neural network. International Journal of Machine Tools and Manufacture, 39, 489–504.CrossRef Choudhury, S. K., Jain, V. K., & Rao, C. V. V. R. (1999). On-line monitoring of tool wear in turning using a neural network. International Journal of Machine Tools and Manufacture, 39, 489–504.CrossRef
Zurück zum Zitat Chryssolouris, G., & Domroese, M. (1989). An experimental study of strategies for integrating sensor information in machining. CIRP Annals, 38, 425–428.CrossRef Chryssolouris, G., & Domroese, M. (1989). An experimental study of strategies for integrating sensor information in machining. CIRP Annals, 38, 425–428.CrossRef
Zurück zum Zitat Corne, R., Nath, C., El Mansori, M., & Kurfess, T. (2017). Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling. Journal of Manufacturing Systems, 43, 287–295.CrossRef Corne, R., Nath, C., El Mansori, M., & Kurfess, T. (2017). Study of spindle power data with neural network for predicting real-time tool wear/breakage during inconel drilling. Journal of Manufacturing Systems, 43, 287–295.CrossRef
Zurück zum Zitat D’Addona, D. M., Matarazzo, D., Ullah, A. M. M. S., & Teti, R. (2015). Tool wear control through cognitive paradigms. Procedia CIRP, 33, 221–226.CrossRef D’Addona, D. M., Matarazzo, D., Ullah, A. M. M. S., & Teti, R. (2015). Tool wear control through cognitive paradigms. Procedia CIRP, 33, 221–226.CrossRef
Zurück zum Zitat D’Addona, D. M., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia Cirp, 12, 252–257.CrossRef D’Addona, D. M., & Teti, R. (2013). Image data processing via neural networks for tool wear prediction. Procedia Cirp, 12, 252–257.CrossRef
Zurück zum Zitat D’Addona, D. M., Ullah, A. M. M. S., & Matarazzo, D. (2017). Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. Journal of Intelligent Manufacturing, 28, 1285–1301.CrossRef D’Addona, D. M., Ullah, A. M. M. S., & Matarazzo, D. (2017). Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing. Journal of Intelligent Manufacturing, 28, 1285–1301.CrossRef
Zurück zum Zitat da Silva, R. H. L., da Silva, M. B., & Hassui, A. (2016). A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Machining Science and Technology, 20, 386–405.CrossRef da Silva, R. H. L., da Silva, M. B., & Hassui, A. (2016). A probabilistic neural network applied in monitoring tool wear in the end milling operation via acoustic emission and cutting power signals. Machining Science and Technology, 20, 386–405.CrossRef
Zurück zum Zitat Deiab, I., Assaleh, K., & Hammad, F. (2009). On modeling of tool wear using sensor fusion and polynomial classifiers. Mechanical Systems and Signal Processing, 23, 1719–1729.CrossRef Deiab, I., Assaleh, K., & Hammad, F. (2009). On modeling of tool wear using sensor fusion and polynomial classifiers. Mechanical Systems and Signal Processing, 23, 1719–1729.CrossRef
Zurück zum Zitat Dornfeld, D. A., & DeVries, M. F. (1990). Neural network sensor fusion for tool condition monitoring. CIRP Annals, 39, 101–105.CrossRef Dornfeld, D. A., & DeVries, M. F. (1990). Neural network sensor fusion for tool condition monitoring. CIRP Annals, 39, 101–105.CrossRef
Zurück zum Zitat Drouillet, C., Karandikar, J., Nath, C., Journeaux, A.-C., El Mansori, M., & Kurfess, T. (2016). Tool life predictions in milling using spindle power with the neural network technique. Journal of Manufacturing Processes, 22, 161–168.CrossRef Drouillet, C., Karandikar, J., Nath, C., Journeaux, A.-C., El Mansori, M., & Kurfess, T. (2016). Tool life predictions in milling using spindle power with the neural network technique. Journal of Manufacturing Processes, 22, 161–168.CrossRef
Zurück zum Zitat Dutta, S., Pal, S. K., Mukhopadhyay, S., & Sen, R. (2013). Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology, 6, 212–232.CrossRef Dutta, S., Pal, S. K., Mukhopadhyay, S., & Sen, R. (2013). Application of digital image processing in tool condition monitoring: A review. CIRP Journal of Manufacturing Science and Technology, 6, 212–232.CrossRef
Zurück zum Zitat Elangovan, M., Devasenapati, S. B., Sakthivel, N. R., & Ramachandran, K. I. (2011). Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Systems with Applications, 38, 4450–4459.CrossRef Elangovan, M., Devasenapati, S. B., Sakthivel, N. R., & Ramachandran, K. I. (2011). Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Systems with Applications, 38, 4450–4459.CrossRef
Zurück zum Zitat Erden, M. A., Yaşar, N., Korkmaz, M. E., Ayvacı, B., Nimel Sworna Ross, K., & Mia, M. (2021). Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method. The International Journal of Advanced Manufacturing Technology, 284, 2811–2827. https://doi.org/10.1007/s00170-021-07052-zCrossRef Erden, M. A., Yaşar, N., Korkmaz, M. E., Ayvacı, B., Nimel Sworna Ross, K., & Mia, M. (2021). Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method. The International Journal of Advanced Manufacturing Technology, 284, 2811–2827. https://​doi.​org/​10.​1007/​s00170-021-07052-zCrossRef
Zurück zum Zitat Ertunc, H. M., & Oysu, C. (2004). Drill wear monitoring using cutting force signals. Mechatronics, 14, 533–548.CrossRef Ertunc, H. M., & Oysu, C. (2004). Drill wear monitoring using cutting force signals. Mechatronics, 14, 533–548.CrossRef
Zurück zum Zitat Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45, 1375–1385.CrossRef Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45, 1375–1385.CrossRef
Zurück zum Zitat Ferreira, F. I., de Aguiar, P. R., Lopes, W. N., Martins, C. H. R., de Souza, R. R., Bianchi, E. C., et al. (2019). Inferential measurement of the dresser width for the grinding process automation. International Journal of Advanced Manufacturing Technology, 100, 3055–3066.CrossRef Ferreira, F. I., de Aguiar, P. R., Lopes, W. N., Martins, C. H. R., de Souza, R. R., Bianchi, E. C., et al. (2019). Inferential measurement of the dresser width for the grinding process automation. International Journal of Advanced Manufacturing Technology, 100, 3055–3066.CrossRef
Zurück zum Zitat Fong, K. M., Wang, X., Kamaruddin, S., & Ismadi, M.-Z. (2021). Investigation on universal tool wear measurement technique using image-based cross-correlation analysis. Measurement, 169, 108489.CrossRef Fong, K. M., Wang, X., Kamaruddin, S., & Ismadi, M.-Z. (2021). Investigation on universal tool wear measurement technique using image-based cross-correlation analysis. Measurement, 169, 108489.CrossRef
Zurück zum Zitat Freyer, B. H., Heyns, P. S., & Theron, N. J. (2014). Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. Journal of Intelligent Manufacturing, 25, 473–487.CrossRef Freyer, B. H., Heyns, P. S., & Theron, N. J. (2014). Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. Journal of Intelligent Manufacturing, 25, 473–487.CrossRef
Zurück zum Zitat García-Ordás, M. T., Alegre, E., González-Castro, V., & Alaiz-Rodríguez, R. (2017). A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. International Journal of Advanced Manufacturing Technology, 90, 1947–1961.CrossRef García-Ordás, M. T., Alegre, E., González-Castro, V., & Alaiz-Rodríguez, R. (2017). A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques. International Journal of Advanced Manufacturing Technology, 90, 1947–1961.CrossRef
Zurück zum Zitat García-Ordás, M. T., Alegre-Gutiérrez, E., Alaiz-Rodríguez, R., & González-Castro, V. (2018). Tool wear monitoring using an online, automatic and low cost system based on local texture. Mechanical Systems and Signal Processing, 112, 98–112.CrossRef García-Ordás, M. T., Alegre-Gutiérrez, E., Alaiz-Rodríguez, R., & González-Castro, V. (2018). Tool wear monitoring using an online, automatic and low cost system based on local texture. Mechanical Systems and Signal Processing, 112, 98–112.CrossRef
Zurück zum Zitat Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., et al. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21, 466–479.CrossRef Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., et al. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21, 466–479.CrossRef
Zurück zum Zitat Griffin, J. M. (2018). The prediction of profile deviations from multi process machining of complex geometrical features using combined evolutionary and neural network algorithms with embedded simulation. Journal of Intelligent Manufacturing, 29, 1171–1189.CrossRef Griffin, J. M. (2018). The prediction of profile deviations from multi process machining of complex geometrical features using combined evolutionary and neural network algorithms with embedded simulation. Journal of Intelligent Manufacturing, 29, 1171–1189.CrossRef
Zurück zum Zitat Gupta, M. K., Mia, M., Pruncu, C. I., Khan, A. M., Rahman, M. A., Jamil, M., et al. (2020). Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: An intelligent approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 207. https://doi.org/10.1007/s40430-020-2256-zCrossRef Gupta, M. K., Mia, M., Pruncu, C. I., Khan, A. M., Rahman, M. A., Jamil, M., et al. (2020). Modeling and performance evaluation of Al2O3, MoS2 and graphite nanoparticle-assisted MQL in turning titanium alloy: An intelligent approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42, 207. https://​doi.​org/​10.​1007/​s40430-020-2256-zCrossRef
Zurück zum Zitat Guzeev, V. I., & Pimenov, D. Y. (2011). Cutting force in face milling with tool wear. Russian Engineering Research, 31, 989.CrossRef Guzeev, V. I., & Pimenov, D. Y. (2011). Cutting force in face milling with tool wear. Russian Engineering Research, 31, 989.CrossRef
Zurück zum Zitat Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.CrossRef Hu, S., Liu, F., He, Y., & Hu, T. (2012). An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27, 133–140.CrossRef
Zurück zum Zitat Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2019). Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing, 31, 953–966.CrossRef Huang, Z., Zhu, J., Lei, J., Li, X., & Tian, F. (2019). Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing, 31, 953–966.CrossRef
Zurück zum Zitat Hui, Y., Mei, X., Jiang, G., Tao, T., Pei, C., & Ma, Z. (2019). milling tool wear state recognition by vibration signal using a stacked generalization ensemble model. Shock and Vibration, 2019, 1–16.CrossRef Hui, Y., Mei, X., Jiang, G., Tao, T., Pei, C., & Ma, Z. (2019). milling tool wear state recognition by vibration signal using a stacked generalization ensemble model. Shock and Vibration, 2019, 1–16.CrossRef
Zurück zum Zitat Jackson, M. J., Robinson, G. M., Hyde, L. J., & Rhodes, R. (2006). Neural image processing of the wear of cutting tools coated with thin films. Journal of Materials Engineering and Performance, 15, 223–229.CrossRef Jackson, M. J., Robinson, G. M., Hyde, L. J., & Rhodes, R. (2006). Neural image processing of the wear of cutting tools coated with thin films. Journal of Materials Engineering and Performance, 15, 223–229.CrossRef
Zurück zum Zitat Jain, A. K., & Lad, B. K. (2019). A novel integrated tool condition monitoring system. Journal of Intelligent Manufacturing, 30, 1423–1436.CrossRef Jain, A. K., & Lad, B. K. (2019). A novel integrated tool condition monitoring system. Journal of Intelligent Manufacturing, 30, 1423–1436.CrossRef
Zurück zum Zitat Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.CrossRef Jang, J.-S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23, 665–685.CrossRef
Zurück zum Zitat Javed, K., Gouriveau, R., Li, X., & Zerhouni, N. (2018). Tool wear monitoring and prognostics challenges: A comparison of connectionist methods toward an adaptive ensemble model. Journal of Intelligent Manufacturing, 29, 1873–1890.CrossRef Javed, K., Gouriveau, R., Li, X., & Zerhouni, N. (2018). Tool wear monitoring and prognostics challenges: A comparison of connectionist methods toward an adaptive ensemble model. Journal of Intelligent Manufacturing, 29, 1873–1890.CrossRef
Zurück zum Zitat Jemielniak, K., Kwiatkowski, L., & Wrzosek, P. (1998). Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network. Journal of Intelligent Manufacturing, 9, 447–455.CrossRef Jemielniak, K., Kwiatkowski, L., & Wrzosek, P. (1998). Diagnosis of tool wear based on cutting forces and acoustic emission measures as inputs to a neural network. Journal of Intelligent Manufacturing, 9, 447–455.CrossRef
Zurück zum Zitat Junior, P., D’Addona, D. M., Aguiar, P., & Teti, R. (2018). Dressing tool condition monitoring through impedance-based sensors: Part 2—neural networks and k-nearest neighbor classifier approach. Sensors, 18, 4453.CrossRef Junior, P., D’Addona, D. M., Aguiar, P., & Teti, R. (2018). Dressing tool condition monitoring through impedance-based sensors: Part 2—neural networks and k-nearest neighbor classifier approach. Sensors, 18, 4453.CrossRef
Zurück zum Zitat Kamarthi, S. V., & Pittner, S. (1997). Fourier and wavelet transform for flank wear estimation—a comparison. Mechanical Systems and Signal Processing, 11, 791–809.CrossRef Kamarthi, S. V., & Pittner, S. (1997). Fourier and wavelet transform for flank wear estimation—a comparison. Mechanical Systems and Signal Processing, 11, 791–809.CrossRef
Zurück zum Zitat Karandikar, J. M., Schmitz, T. L., & Abbas, A. E. (2012). Spindle speed selection for tool life testing using Bayesian inference. Journal of Manufacturing Systems, 31, 403–411.CrossRef Karandikar, J. M., Schmitz, T. L., & Abbas, A. E. (2012). Spindle speed selection for tool life testing using Bayesian inference. Journal of Manufacturing Systems, 31, 403–411.CrossRef
Zurück zum Zitat Kassim, A. A., Mian, Z., & Mannan, M. A. (2004). Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recognit, 37, 1925–1933.CrossRef Kassim, A. A., Mian, Z., & Mannan, M. A. (2004). Connectivity oriented fast Hough transform for tool wear monitoring. Pattern Recognit, 37, 1925–1933.CrossRef
Zurück zum Zitat Kassim, A. A., Mian, Z., & Mannan, M. A. (2006). Tool condition classification using Hidden Markov model based on fractal analysis of machined surface textures. Machine Vision and Applications, 17, 327–336.CrossRef Kassim, A. A., Mian, Z., & Mannan, M. A. (2006). Tool condition classification using Hidden Markov model based on fractal analysis of machined surface textures. Machine Vision and Applications, 17, 327–336.CrossRef
Zurück zum Zitat Kaya, B., Oysu, C., Ertunc, H. M., & Ocak, H. (2012). A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm. Proc Inst Mech Eng Part B J Eng Manuf, 226, 1808–1818.CrossRef Kaya, B., Oysu, C., Ertunc, H. M., & Ocak, H. (2012). A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm. Proc Inst Mech Eng Part B J Eng Manuf, 226, 1808–1818.CrossRef
Zurück zum Zitat Kilundu, B., & Dehombreux, P. (2008). Singular spectrum analysis and Machine Learning techniques for tool wear monitoring. Mecanique and Industries, 9, 1–8.CrossRef Kilundu, B., & Dehombreux, P. (2008). Singular spectrum analysis and Machine Learning techniques for tool wear monitoring. Mecanique and Industries, 9, 1–8.CrossRef
Zurück zum Zitat Kim, D.-H., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 555–568.CrossRef Kim, D.-H., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., et al. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 555–568.CrossRef
Zurück zum Zitat Korkmaz, M. E., & Günay, M. U. S. T. A. F. A. (2018). Experimental and statistical analysis on machinability of nimonic80A superalloy with pvd coated carbide. Sigma Journal of Engineering and Natural Sciences, 36, 1141–1152. Korkmaz, M. E., & Günay, M. U. S. T. A. F. A. (2018). Experimental and statistical analysis on machinability of nimonic80A superalloy with pvd coated carbide. Sigma Journal of Engineering and Natural Sciences, 36, 1141–1152.
Zurück zum Zitat Kothuru, A., Nooka, S. P., & Liu, R. (2018). Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. International Journal of Advanced Manufacturing Technology, 95, 3797–3808.CrossRef Kothuru, A., Nooka, S. P., & Liu, R. (2018). Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. International Journal of Advanced Manufacturing Technology, 95, 3797–3808.CrossRef
Zurück zum Zitat Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2014). Multi-output fuzzy inference system for modeling cutting temperature and tool life in face milling. Journal of Mechanical Science and Technology, 28, 4247–4256.CrossRef Kovac, P., Rodic, D., Pucovsky, V., Savkovic, B., & Gostimirovic, M. (2014). Multi-output fuzzy inference system for modeling cutting temperature and tool life in face milling. Journal of Mechanical Science and Technology, 28, 4247–4256.CrossRef
Zurück zum Zitat Krishnakumar, P., Rameshkumar, K., & Ramachandran, K. I. (2018). Acoustic emission-based tool condition classification in a precision high-speed machining of titanium alloy: A machine learning approach. International Journal of Computational Intelligence and Applications, 17, 1850017.CrossRef Krishnakumar, P., Rameshkumar, K., & Ramachandran, K. I. (2018). Acoustic emission-based tool condition classification in a precision high-speed machining of titanium alloy: A machine learning approach. International Journal of Computational Intelligence and Applications, 17, 1850017.CrossRef
Zurück zum Zitat Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algorithms. John Wiley & Sons. Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algorithms. John Wiley & Sons.
Zurück zum Zitat Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Usca, Ü. A., Salur, E., Gupta, M. K., et al. (2021a). A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends. Sensors, 21, 108.CrossRef Kuntoğlu, M., Aslan, A., Pimenov, D. Y., Usca, Ü. A., Salur, E., Gupta, M. K., et al. (2021a). A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends. Sensors, 21, 108.CrossRef
Zurück zum Zitat Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., & Mikolajczyk, T. (2020). Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors, 20, 4377.CrossRef Kuntoğlu, M., Aslan, A., Sağlam, H., Pimenov, D. Y., Giasin, K., & Mikolajczyk, T. (2020). Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors, 20, 4377.CrossRef
Zurück zum Zitat Kuntoğlu, M., & Sağlam, H. (2021c). Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement, 173, 108582.CrossRef Kuntoğlu, M., & Sağlam, H. (2021c). Investigation of signal behaviors for sensor fusion with tool condition monitoring system in turning. Measurement, 173, 108582.CrossRef
Zurück zum Zitat Kuntoğlu, M., Salur, E., Gupta, M. K., Sarıkaya, M., & Pimenov, D. Y. (2021d). A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. The International Journal of Advanced Manufacturing Technology, 116, 2711–2735.CrossRef Kuntoğlu, M., Salur, E., Gupta, M. K., Sarıkaya, M., & Pimenov, D. Y. (2021d). A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. The International Journal of Advanced Manufacturing Technology, 116, 2711–2735.CrossRef
Zurück zum Zitat Kuo, R. J., & Cohen, P. H. (1999). Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network. Neural Networks, 12, 355–370.CrossRef Kuo, R. J., & Cohen, P. H. (1999). Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network. Neural Networks, 12, 355–370.CrossRef
Zurück zum Zitat Kuram, E., & Ozcelik, B. (2016). Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling. Journal of Intelligent Manufacturing, 27, 817–830.CrossRef Kuram, E., & Ozcelik, B. (2016). Micro-milling performance of AISI 304 stainless steel using Taguchi method and fuzzy logic modelling. Journal of Intelligent Manufacturing, 27, 817–830.CrossRef
Zurück zum Zitat LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.CrossRef LaValle, S. M. (2006). Planning algorithms. Cambridge University Press.CrossRef
Zurück zum Zitat Lee, K.-M., Huang, Y., Ji, J., & Lin, C.-Y. (2018). An online tool temperature monitoring method based on physics-guided infrared image features and artificial neural network for dry cutting. IEEE Transactions on Automation Science and Engineering, 15, 1665–1676.CrossRef Lee, K.-M., Huang, Y., Ji, J., & Lin, C.-Y. (2018). An online tool temperature monitoring method based on physics-guided infrared image features and artificial neural network for dry cutting. IEEE Transactions on Automation Science and Engineering, 15, 1665–1676.CrossRef
Zurück zum Zitat Letot, C., Serra, R., Dossevi, M., & Dehombreux, P. (2016). Cutting tools reliability and residual life prediction from degradation indicators in turning process. International Journal of Advanced Manufacturing Technology, 86, 495–506.CrossRef Letot, C., Serra, R., Dossevi, M., & Dehombreux, P. (2016). Cutting tools reliability and residual life prediction from degradation indicators in turning process. International Journal of Advanced Manufacturing Technology, 86, 495–506.CrossRef
Zurück zum Zitat Li, C. J., & Tzeng, T. C. (2000). Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mechanical Systems and Signal Processing, 14, 945–957.CrossRef Li, C. J., & Tzeng, T. C. (2000). Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mechanical Systems and Signal Processing, 14, 945–957.CrossRef
Zurück zum Zitat Li, H., Wang, W., Li, Z., Dong, L., & Li, Q. (2020). A novel approach for predicting tool remaining useful life using limited data. Mechanical Systems and Signal Processing, 143, 106832.CrossRef Li, H., Wang, W., Li, Z., Dong, L., & Li, Q. (2020). A novel approach for predicting tool remaining useful life using limited data. Mechanical Systems and Signal Processing, 143, 106832.CrossRef
Zurück zum Zitat Li, S., & Elbestawi, M. A. (1996). Tool condition monitoring in machining by fuzzy neural networks. Journal of Dynamic Systems, 118, 665–672. Li, S., & Elbestawi, M. A. (1996). Tool condition monitoring in machining by fuzzy neural networks. Journal of Dynamic Systems, 118, 665–672.
Zurück zum Zitat Li, X. (2002). A brief review: Acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture, 42, 157–165.CrossRef Li, X. (2002). A brief review: Acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture, 42, 157–165.CrossRef
Zurück zum Zitat Li, X. Q., Wong, Y. S., & Nee, A. Y. C. (1999). Intelligent tool wear identification based on optical scattering image and hybrid artificial intelligence techniques. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 213, 191–196.CrossRef Li, X. Q., Wong, Y. S., & Nee, A. Y. C. (1999). Intelligent tool wear identification based on optical scattering image and hybrid artificial intelligence techniques. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 213, 191–196.CrossRef
Zurück zum Zitat Liao, X., Zhou, G., Zhang, Z., Lu, J., & Ma, J. (2019). Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. International Journal of Advanced Manufacturing Technology, 104, 1051–1063.CrossRef Liao, X., Zhou, G., Zhang, Z., Lu, J., & Ma, J. (2019). Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. International Journal of Advanced Manufacturing Technology, 104, 1051–1063.CrossRef
Zurück zum Zitat Liu, C., Li, Y., Zhou, G., & Shen, W. (2018). A sensor fusion and support vector machine based approach for recognition of complex machining conditions. Journal of Intelligent Manufacturing, 29, 1739–1752.CrossRef Liu, C., Li, Y., Zhou, G., & Shen, W. (2018). A sensor fusion and support vector machine based approach for recognition of complex machining conditions. Journal of Intelligent Manufacturing, 29, 1739–1752.CrossRef
Zurück zum Zitat Liu, T. I., Kumagai, A., Wang, Y. C., Song, S. D., Fu, Z., & Lee, J. (2010). On-line monitoring of boring tools for control of boring operations. Robotics and Computer Integrated Manufacturing, 26, 230–239.CrossRef Liu, T. I., Kumagai, A., Wang, Y. C., Song, S. D., Fu, Z., & Lee, J. (2010). On-line monitoring of boring tools for control of boring operations. Robotics and Computer Integrated Manufacturing, 26, 230–239.CrossRef
Zurück zum Zitat Martínez-Arellano, G., Terrazas, G., & Ratchev, S. (2019). Tool wear classification using time series imaging and deep learning. International Journal of Advanced Manufacturing Technology, 104, 3647–3662.CrossRef Martínez-Arellano, G., Terrazas, G., & Ratchev, S. (2019). Tool wear classification using time series imaging and deep learning. International Journal of Advanced Manufacturing Technology, 104, 3647–3662.CrossRef
Zurück zum Zitat Maruda, R. W., Feldshtein, E., Legutko, S., & Krolczyk, G. M. (2015). Research on emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Tehnički vjesnik, 22(5), 1213–1218. Maruda, R. W., Feldshtein, E., Legutko, S., & Krolczyk, G. M. (2015). Research on emulsion mist generation in the conditions of minimum quantity cooling lubrication (MQCL). Tehnički vjesnik, 22(5), 1213–1218.
Zurück zum Zitat Maruda, R. W., Krolczyk, G. M., Michalski, M., Nieslony, P., & Wojciechowski, S. (2017b). Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. Journal of Materials Engineering and Performance, 26, 431–438. https://doi.org/10.1007/s11665-016-2450-4CrossRef Maruda, R. W., Krolczyk, G. M., Michalski, M., Nieslony, P., & Wojciechowski, S. (2017b). Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. Journal of Materials Engineering and Performance, 26, 431–438. https://​doi.​org/​10.​1007/​s11665-016-2450-4CrossRef
Zurück zum Zitat Maruda, R. W., Krolczyk, G. M., Wojciechowski, S., Zak, K., Habrat, W., & Nieslony, P. (2018). Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. Journal of Mechanical Science and Technology, 32, 1585–1591. https://doi.org/10.1007/s12206-018-0313-7CrossRef Maruda, R. W., Krolczyk, G. M., Wojciechowski, S., Zak, K., Habrat, W., & Nieslony, P. (2018). Effects of extreme pressure and anti-wear additives on surface topography and tool wear during MQCL turning of AISI 1045 steel. Journal of Mechanical Science and Technology, 32, 1585–1591. https://​doi.​org/​10.​1007/​s12206-018-0313-7CrossRef
Zurück zum Zitat Masoudi, S., Sima, M., & Tolouei-Rad, M. (2018). Comparative study of ANN and ANFIS models for predicting temperature in machining. Journal of Engineering Science and Technology, 13, 211–225. Masoudi, S., Sima, M., & Tolouei-Rad, M. (2018). Comparative study of ANN and ANFIS models for predicting temperature in machining. Journal of Engineering Science and Technology, 13, 211–225.
Zurück zum Zitat McParland, D., Baron, S., O’Rourke, S., Dowling, D., Ahearne, E., & Parnell, A. (2019). Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models. Journal of Intelligent Manufacturing, 30, 1259–1270. https://doi.org/10.1007/s10845-017-1317-3CrossRef McParland, D., Baron, S., O’Rourke, S., Dowling, D., Ahearne, E., & Parnell, A. (2019). Prediction of tool-wear in turning of medical grade cobalt chromium molybdenum alloy (ASTM F75) using non-parametric Bayesian models. Journal of Intelligent Manufacturing, 30, 1259–1270. https://​doi.​org/​10.​1007/​s10845-017-1317-3CrossRef
Zurück zum Zitat Mia, M., Khan, M. A., & Dhar, N. R. (2017). Performance prediction of high-pressure coolant assisted turning of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 90, 1433–1445.CrossRef Mia, M., Khan, M. A., & Dhar, N. R. (2017). Performance prediction of high-pressure coolant assisted turning of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 90, 1433–1445.CrossRef
Zurück zum Zitat Mikołajczyk, T., Nowicki, K., Bustillo, A., & Pimenov, D. Y. (2018). Predicting tool life in turning operations using neural networks and image processing. Mechanical Systems and Signal Processing, 104, 503–513.CrossRef Mikołajczyk, T., Nowicki, K., Bustillo, A., & Pimenov, D. Y. (2018). Predicting tool life in turning operations using neural networks and image processing. Mechanical Systems and Signal Processing, 104, 503–513.CrossRef
Zurück zum Zitat Mikołajczyk, T., Nowicki, K., Kłodowski, A., & Pimenov, D. Y. (2017). Neural network approach for automatic image analysis of cutting edge wear. Mechanical Systems and Signal Processing, 88, 100–110.CrossRef Mikołajczyk, T., Nowicki, K., Kłodowski, A., & Pimenov, D. Y. (2017). Neural network approach for automatic image analysis of cutting edge wear. Mechanical Systems and Signal Processing, 88, 100–110.CrossRef
Zurück zum Zitat Mohanraj, T., Shankar, S., Rajasekar, R., Sakthivel, N. R., & Pramanik, A. (2020). Tool condition monitoring techniques in milling process—A review. Journal of Materials Research and Technology, 9, 1032–1042.CrossRef Mohanraj, T., Shankar, S., Rajasekar, R., Sakthivel, N. R., & Pramanik, A. (2020). Tool condition monitoring techniques in milling process—A review. Journal of Materials Research and Technology, 9, 1032–1042.CrossRef
Zurück zum Zitat Monostori, L., & Prohaszka, J. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488.CrossRef Monostori, L., & Prohaszka, J. (1993). A step towards intelligent manufacturing: Modelling and monitoring of manufacturing processes through artificial neural networks. CIRP Annals, 42, 485–488.CrossRef
Zurück zum Zitat Nakai, M. E., Aguiar, P. R., Guillardi, H., Jr., Bianchi, E. C., Spatti, D. H., & D’Addona, D. M. (2015). Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Systems with Applications, 42, 7026–7035.CrossRef Nakai, M. E., Aguiar, P. R., Guillardi, H., Jr., Bianchi, E. C., Spatti, D. H., & D’Addona, D. M. (2015). Evaluation of neural models applied to the estimation of tool wear in the grinding of advanced ceramics. Expert Systems with Applications, 42, 7026–7035.CrossRef
Zurück zum Zitat Ngo, T. (2011). Data mining: practical machine learning tools and technique, by ian h. witten, eibe frank, mark a. hell. ACM SIGSOFT Software Engineering Notes, 36(5), 51–52.CrossRef Ngo, T. (2011). Data mining: practical machine learning tools and technique, by ian h. witten, eibe frank, mark a. hell. ACM SIGSOFT Software Engineering Notes, 36(5), 51–52.CrossRef
Zurück zum Zitat Niaki, F. A., Feng, L., Ulutan, D., & Mears, L. (2016a). A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials. International Journal of Mechatronics and Manufacturing Systems, 9, 97–121.CrossRef Niaki, F. A., Feng, L., Ulutan, D., & Mears, L. (2016a). A wavelet-based data-driven modelling for tool wear assessment of difficult to machine materials. International Journal of Mechatronics and Manufacturing Systems, 9, 97–121.CrossRef
Zurück zum Zitat Niaki, F. A., Ulutan, D., & Mears, L. (2016b). Parameter inference under uncertainty in end-milling γ′-strengthened difficult-to-machine alloy. Journal of Manufacturing Science and Engineering, 138, 061014.CrossRef Niaki, F. A., Ulutan, D., & Mears, L. (2016b). Parameter inference under uncertainty in end-milling γ′-strengthened difficult-to-machine alloy. Journal of Manufacturing Science and Engineering, 138, 061014.CrossRef
Zurück zum Zitat Olufayo, O., & Abou-El-Hossein, K. (2015). Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-steel. International Journal of Advanced Manufacturing Technology, 81, 39–51.CrossRef Olufayo, O., & Abou-El-Hossein, K. (2015). Tool life estimation based on acoustic emission monitoring in end-milling of H13 mould-steel. International Journal of Advanced Manufacturing Technology, 81, 39–51.CrossRef
Zurück zum Zitat Ong, P., Lee, W. K., & Lau, R. J. H. (2019). Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. International Journal of Advanced Manufacturing Technology, 104, 1369–1379.CrossRef Ong, P., Lee, W. K., & Lau, R. J. H. (2019). Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. International Journal of Advanced Manufacturing Technology, 104, 1369–1379.CrossRef
Zurück zum Zitat Oztemel, E., & Gursev, S. (2020). Literature review of Industry 40 and related technologies. Journal of Intelligent Manufacturing, 31, 127–182.CrossRef Oztemel, E., & Gursev, S. (2020). Literature review of Industry 40 and related technologies. Journal of Intelligent Manufacturing, 31, 127–182.CrossRef
Zurück zum Zitat Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36, 2–17.CrossRef Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36, 2–17.CrossRef
Zurück zum Zitat Pan, T., Zhang, J., Yang, L., Zhao, W., Zhang, H., & Lu, B. (2021). Tool breakage monitoring based on the feature fusion of spindle acceleration signal. International Journal of Advanced Manufacturing Technology, 117, 2973–2986.CrossRef Pan, T., Zhang, J., Yang, L., Zhao, W., Zhang, H., & Lu, B. (2021). Tool breakage monitoring based on the feature fusion of spindle acceleration signal. International Journal of Advanced Manufacturing Technology, 117, 2973–2986.CrossRef
Zurück zum Zitat Pandiyan, V., Caesarendra, W., Tjahjowidodo, T., & Tan, H. H. (2018). In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. Journal of Manufacturing Processes, 31, 199–213.CrossRef Pandiyan, V., Caesarendra, W., Tjahjowidodo, T., & Tan, H. H. (2018). In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm. Journal of Manufacturing Processes, 31, 199–213.CrossRef
Zurück zum Zitat Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: A review. Journal of Manufacturing Processes, 57, 114–135.CrossRef Pandiyan, V., Shevchik, S., Wasmer, K., Castagne, S., & Tjahjowidodo, T. (2020). Modelling and monitoring of abrasive finishing processes using artificial intelligence techniques: A review. Journal of Manufacturing Processes, 57, 114–135.CrossRef
Zurück zum Zitat Patra, K., Pal, S. K., & Bhattacharyya, K. (2007). Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing, 7, 929–935.CrossRef Patra, K., Pal, S. K., & Bhattacharyya, K. (2007). Artificial neural network based prediction of drill flank wear from motor current signals. Applied Soft Computing, 7, 929–935.CrossRef
Zurück zum Zitat Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29, 1045–1061.CrossRef Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29, 1045–1061.CrossRef
Zurück zum Zitat Quan, Y., Zhou, M., & Luo, Z. (1998). On-line robust identification of tool-wear via multi-sensor neural-network fusion. Engineering Applications of Artificial Intelligence, 11, 717–722.CrossRef Quan, Y., Zhou, M., & Luo, Z. (1998). On-line robust identification of tool-wear via multi-sensor neural-network fusion. Engineering Applications of Artificial Intelligence, 11, 717–722.CrossRef
Zurück zum Zitat Rao, C. H. S., Rao, D. N., & Rao, R. N. S. (2006). Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, 2069–2076.CrossRef Rao, C. H. S., Rao, D. N., & Rao, R. N. S. (2006). Online prediction of diffusion wear on the flank through tool tip temperature in turning using artificial neural networks. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220, 2069–2076.CrossRef
Zurück zum Zitat Rao, K. V., & Murthy, P. (2018). Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM. ANN and SVM. J Intell Manuf, 29, 1533–1543.CrossRef Rao, K. V., & Murthy, P. (2018). Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM. ANN and SVM. J Intell Manuf, 29, 1533–1543.CrossRef
Zurück zum Zitat Rao, K. V., Vidhu, K. P., Kumar, T. A., Rao, N. N., Murthy, P., & Balaji, M. (2016). An artificial neural network approach to investigate surface roughness and vibration of workpiece in boring of AISI1040 steels. International Journal of Advanced Manufacturing Technology, 83, 919–927.CrossRef Rao, K. V., Vidhu, K. P., Kumar, T. A., Rao, N. N., Murthy, P., & Balaji, M. (2016). An artificial neural network approach to investigate surface roughness and vibration of workpiece in boring of AISI1040 steels. International Journal of Advanced Manufacturing Technology, 83, 919–927.CrossRef
Zurück zum Zitat Rehorn, A. G., Jiang, J., & Orban, P. E. (2005). State-of-the-art methods and results in tool condition monitoring: A review. International Journal of Advanced Manufacturing Technology, 26, 693–710.CrossRef Rehorn, A. G., Jiang, J., & Orban, P. E. (2005). State-of-the-art methods and results in tool condition monitoring: A review. International Journal of Advanced Manufacturing Technology, 26, 693–710.CrossRef
Zurück zum Zitat Ren, Q., Balazinski, M., & Baron, L. (2012). High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. International Journal of Advanced Manufacturing Technology, 63, 1057–1063.CrossRef Ren, Q., Balazinski, M., & Baron, L. (2012). High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process. International Journal of Advanced Manufacturing Technology, 63, 1057–1063.CrossRef
Zurück zum Zitat Ren, Q., Balazinski, M., Baron, L., Jemielniak, K., Botez, R., & Achiche, S. (2014). Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Information Sciences, 255, 121–134.CrossRef Ren, Q., Balazinski, M., Baron, L., Jemielniak, K., Botez, R., & Achiche, S. (2014). Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Information Sciences, 255, 121–134.CrossRef
Zurück zum Zitat Ren, Q., Baron, L., Balazinski, M., Botez, R., & Bigras, P. (2015). Tool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emission. Applied Soft Computing, 31, 14–24.CrossRef Ren, Q., Baron, L., Balazinski, M., Botez, R., & Bigras, P. (2015). Tool wear assessment based on type-2 fuzzy uncertainty estimation on acoustic emission. Applied Soft Computing, 31, 14–24.CrossRef
Zurück zum Zitat Rivero, A. D., de Lacalle, L. L., & Penalva, M. L. (2008). Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals. Mechatronics, 18, 627–633.CrossRef Rivero, A. D., de Lacalle, L. L., & Penalva, M. L. (2008). Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals. Mechatronics, 18, 627–633.CrossRef
Zurück zum Zitat Rodić, D., Sekulić, M., Gostimirović, M., Pucovsky, V., & Kramar, D. (2021). Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning. Journal of Intelligent Manufacturing, 32, 21–36.CrossRef Rodić, D., Sekulić, M., Gostimirović, M., Pucovsky, V., & Kramar, D. (2021). Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning. Journal of Intelligent Manufacturing, 32, 21–36.CrossRef
Zurück zum Zitat Sadílek, M., Kratochvíl, J., Petrů, J., Čep, R., Zlámal, T., & Stančeková, D. (2014). Cutting tool wear monitoring with the use of impedance layers. Sadílek, M., Kratochvíl, J., Petrů, J., Čep, R., Zlámal, T., & Stančeková, D. (2014). Cutting tool wear monitoring with the use of impedance layers.
Zurück zum Zitat Sahali, M. A., Belaidi, I., & Serra, R. (2015). Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. International Journal of Advanced Manufacturing Technology, 77, 677–688.CrossRef Sahali, M. A., Belaidi, I., & Serra, R. (2015). Efficient genetic algorithm for multi-objective robust optimization of machining parameters with taking into account uncertainties. International Journal of Advanced Manufacturing Technology, 77, 677–688.CrossRef
Zurück zum Zitat Sahu, N. K., & Andhare, A. B. (2017). Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–6Al–4V using RSM and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 5069–5085.CrossRef Sahu, N. K., & Andhare, A. B. (2017). Modelling and multiobjective optimization for productivity improvement in high speed milling of Ti–6Al–4V using RSM and GA. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 5069–5085.CrossRef
Zurück zum Zitat Saikumar, S., & Shunmugam, M. S. (2012). Investigations into high-speed rough and finish end-milling of hardened EN24 steel for implementation of control strategies. International Journal of Advanced Manufacturing Technology, 63, 391–406.CrossRef Saikumar, S., & Shunmugam, M. S. (2012). Investigations into high-speed rough and finish end-milling of hardened EN24 steel for implementation of control strategies. International Journal of Advanced Manufacturing Technology, 63, 391–406.CrossRef
Zurück zum Zitat Santos, M. C., Machado, A. R., Barrozo, M. A. S., Jackson, M. J., & Ezugwu, E. O. (2015). Multi-objective optimization of cutting conditions when turning aluminum alloys (1350-O and 7075–T6 grades) using genetic algorithm. International Journal of Advanced Manufacturing Technology, 76, 1123–1138.CrossRef Santos, M. C., Machado, A. R., Barrozo, M. A. S., Jackson, M. J., & Ezugwu, E. O. (2015). Multi-objective optimization of cutting conditions when turning aluminum alloys (1350-O and 7075–T6 grades) using genetic algorithm. International Journal of Advanced Manufacturing Technology, 76, 1123–1138.CrossRef
Zurück zum Zitat Santos, P., Maudes, J., & Bustillo, A. (2018). Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. Journal of Intelligent Manufacturing, 29, 333–351.CrossRef Santos, P., Maudes, J., & Bustillo, A. (2018). Identifying maximum imbalance in datasets for fault diagnosis of gearboxes. Journal of Intelligent Manufacturing, 29, 333–351.CrossRef
Zurück zum Zitat Sen, B., Mia, M., Mandal, U. K., & Mondal, S. P. (2019). GEP-and ANN-based tool wear monitoring: A virtually sensing predictive platform for MQL-assisted milling of Inconel 690. International Journal of Advanced Manufacturing Technology, 105, 395–410.CrossRef Sen, B., Mia, M., Mandal, U. K., & Mondal, S. P. (2019). GEP-and ANN-based tool wear monitoring: A virtually sensing predictive platform for MQL-assisted milling of Inconel 690. International Journal of Advanced Manufacturing Technology, 105, 395–410.CrossRef
Zurück zum Zitat Serin, G., Sener, B., Ozbayoglu, A. M., & Unver, H. O. (2020). Review of tool condition monitoring in machining and opportunities for deep learning. The International Journal of Advanced Manufacturing Technology, 109, 953–974.CrossRef Serin, G., Sener, B., Ozbayoglu, A. M., & Unver, H. O. (2020). Review of tool condition monitoring in machining and opportunities for deep learning. The International Journal of Advanced Manufacturing Technology, 109, 953–974.CrossRef
Zurück zum Zitat Shankar, S., Mohanraj, T., & Rajasekar, R. (2019). Prediction of cutting tool wear during milling process using artificial intelligence techniques. International Journal of Computer Integrated Manufacturing, 32, 174–182.CrossRef Shankar, S., Mohanraj, T., & Rajasekar, R. (2019). Prediction of cutting tool wear during milling process using artificial intelligence techniques. International Journal of Computer Integrated Manufacturing, 32, 174–182.CrossRef
Zurück zum Zitat Shen, Y., Yang, F., Habibullah, M. S., Ahmed, J., Das, A. K., Zhou, Y., et al. (2020). Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques. Journal of Intelligent Manufacturing, 32, 1–14. Shen, Y., Yang, F., Habibullah, M. S., Ahmed, J., Das, A. K., Zhou, Y., et al. (2020). Predicting tool wear size across multi-cutting conditions using advanced machine learning techniques. Journal of Intelligent Manufacturing, 32, 1–14.
Zurück zum Zitat Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16, 487–546.CrossRef Sick, B. (2002). On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research. Mechanical Systems and Signal Processing, 16, 487–546.CrossRef
Zurück zum Zitat Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for tool condition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65, 371–393.CrossRef Siddhpura, A., & Paurobally, R. (2013). A review of flank wear prediction methods for tool condition monitoring in a turning process. International Journal of Advanced Manufacturing Technology, 65, 371–393.CrossRef
Zurück zum Zitat Sortino, M. (2003). Application of statistical filtering for optical detection of tool wear. International Journal of Machine Tools and Manufacture, 43, 493–497.CrossRef Sortino, M. (2003). Application of statistical filtering for optical detection of tool wear. International Journal of Machine Tools and Manufacture, 43, 493–497.CrossRef
Zurück zum Zitat Sun, H., Cao, D., Zhao, Z., & Kang, X. (2018). A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process. IEEE Transactions on Reliability, 67, 1294–1303.CrossRef Sun, H., Cao, D., Zhao, Z., & Kang, X. (2018). A hybrid approach to cutting tool remaining useful life prediction based on the Wiener process. IEEE Transactions on Reliability, 67, 1294–1303.CrossRef
Zurück zum Zitat Sun, H., Zhang, J., Mo, R., & Zhang, X. (2020). In-process tool condition forecasting based on a deep learning method. Robotics and Computer-Integrated Manufacturing, 64, 101924.CrossRef Sun, H., Zhang, J., Mo, R., & Zhang, X. (2020). In-process tool condition forecasting based on a deep learning method. Robotics and Computer-Integrated Manufacturing, 64, 101924.CrossRef
Zurück zum Zitat Szczotkarz, N., Mrugalski, R., Maruda, R. W., Królczyk, G. M., Legutko, S., Leksycki, K., et al. (2020). Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International, 156, 106813.CrossRef Szczotkarz, N., Mrugalski, R., Maruda, R. W., Królczyk, G. M., Legutko, S., Leksycki, K., et al. (2020). Cutting tool wear in turning 316L stainless steel in the conditions of minimized lubrication. Tribology International, 156, 106813.CrossRef
Zurück zum Zitat Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals, 59, 717–739.CrossRef Teti, R., Jemielniak, K., O’Donnell, G., & Dornfeld, D. (2010). Advanced monitoring of machining operations. CIRP Annals, 59, 717–739.CrossRef
Zurück zum Zitat Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 11, 4–16.CrossRef Thoben, K.-D., Wiesner, S., & Wuest, T. (2017). “Industrie 4.0” and smart manufacturing-a review of research issues and application examples. International Journal of Automation Technology, 11, 4–16.CrossRef
Zurück zum Zitat Twardowski, P., & Wiciak-Pikuła, M. (2019). Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials, 12, 3091.CrossRef Twardowski, P., & Wiciak-Pikuła, M. (2019). Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel. Materials, 12, 3091.CrossRef
Zurück zum Zitat Vasanth, X. A., Paul, P. S., & Varadarajan, A. S. (2020). A neural network model to predict surface roughness during turning of hardened SS410 steel. International Journal of Systems Assurance Engineering and Management, 11, 704–715.CrossRef Vasanth, X. A., Paul, P. S., & Varadarajan, A. S. (2020). A neural network model to predict surface roughness during turning of hardened SS410 steel. International Journal of Systems Assurance Engineering and Management, 11, 704–715.CrossRef
Zurück zum Zitat Wang, G., & Cui, Y. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24, 1085–1094.CrossRef Wang, G., & Cui, Y. (2013). On line tool wear monitoring based on auto associative neural network. Journal of Intelligent Manufacturing, 24, 1085–1094.CrossRef
Zurück zum Zitat Wang, G., & Feng, X. (2013). Tool wear state recognition based on linear chain conditional random field model. Engineering Applications of Artificial Intelligence, 26, 1421–1427.CrossRef Wang, G., & Feng, X. (2013). Tool wear state recognition based on linear chain conditional random field model. Engineering Applications of Artificial Intelligence, 26, 1421–1427.CrossRef
Zurück zum Zitat Wang, G., Yang, Y., & Li, Z. (2014a). Force sensor based tool condition monitoring using a heterogeneous ensemble learning model. Sensors, 14, 21588–21602.CrossRef Wang, G., Yang, Y., & Li, Z. (2014a). Force sensor based tool condition monitoring using a heterogeneous ensemble learning model. Sensors, 14, 21588–21602.CrossRef
Zurück zum Zitat Wang, G. F., Yang, Y. W., Zhang, Y. C., & Xie, Q. L. (2014b). Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection. Sensors Actuators A Physical, 209, 24–32.CrossRef Wang, G. F., Yang, Y. W., Zhang, Y. C., & Xie, Q. L. (2014b). Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection. Sensors Actuators A Physical, 209, 24–32.CrossRef
Zurück zum Zitat Wang, G., Zhang, Y., Liu, C., Xie, Q., & Xu, Y. (2019). A new tool wear monitoring method based on multi-scale PCA. Journal of Intelligent Manufacturing, 30, 113–122.CrossRef Wang, G., Zhang, Y., Liu, C., Xie, Q., & Xu, Y. (2019). A new tool wear monitoring method based on multi-scale PCA. Journal of Intelligent Manufacturing, 30, 113–122.CrossRef
Zurück zum Zitat Wang, J., Huang, C. Z., & Song, W. G. (2003). The effect of tool flank wear on the orthogonal cutting process and its practical implications. Journal of Materials Processing Technology, 142, 338–346.CrossRef Wang, J., Huang, C. Z., & Song, W. G. (2003). The effect of tool flank wear on the orthogonal cutting process and its practical implications. Journal of Materials Processing Technology, 142, 338–346.CrossRef
Zurück zum Zitat Wang, J., Xie, J., Zhao, R., Zhang, L., & Duan, L. (2017). Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robotics and Computer-Integrated Manufacturing, 45, 47–58.CrossRef Wang, J., Xie, J., Zhao, R., Zhang, L., & Duan, L. (2017). Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing. Robotics and Computer-Integrated Manufacturing, 45, 47–58.CrossRef
Zurück zum Zitat Wang, P., & Gao, R. X. (2015). Adaptive resampling-based particle filtering for tool life prediction. Journal of Manufacturing Systems, 37, 528–534.CrossRef Wang, P., & Gao, R. X. (2015). Adaptive resampling-based particle filtering for tool life prediction. Journal of Manufacturing Systems, 37, 528–534.CrossRef
Zurück zum Zitat Wilkinson, P., Reuben, R. L., Jones, J. D. C., Barton, J. S., Hand, D. P., Carolan, T. A., et al. (1999). Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network. Mechanical Systems and Signal Processing, 13, 955–966.CrossRef Wilkinson, P., Reuben, R. L., Jones, J. D. C., Barton, J. S., Hand, D. P., Carolan, T. A., et al. (1999). Tool wear prediction from acoustic emission and surface characteristics via an artificial neural network. Mechanical Systems and Signal Processing, 13, 955–966.CrossRef
Zurück zum Zitat Wojciechowski, S., Maruda, R. W., Nieslony, P., & Krolczyk, G. M. (2016). Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences, 119, 360–369.CrossRef Wojciechowski, S., Maruda, R. W., Nieslony, P., & Krolczyk, G. M. (2016). Investigation on the edge forces in ball end milling of inclined surfaces. International Journal of Mechanical Sciences, 119, 360–369.CrossRef
Zurück zum Zitat Wu, X., Liu, Y., Zhou, X., & Mou, A. (2019). Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors, 19, 3817.CrossRef Wu, X., Liu, Y., Zhou, X., & Mou, A. (2019). Automatic identification of tool wear based on convolutional neural network in face milling process. Sensors, 19, 3817.CrossRef
Zurück zum Zitat Xie, Z., Li, J., & Lu, Y. (2018). An integrated wireless vibration sensing tool holder for milling tool condition monitoring. International Journal of Advanced Manufacturing Technology, 95, 2885–2896.CrossRef Xie, Z., Li, J., & Lu, Y. (2018). An integrated wireless vibration sensing tool holder for milling tool condition monitoring. International Journal of Advanced Manufacturing Technology, 95, 2885–2896.CrossRef
Zurück zum Zitat Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020a). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing, 32, 77–90.CrossRef Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020a). Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining. Journal of Intelligent Manufacturing, 32, 77–90.CrossRef
Zurück zum Zitat Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020b). A novel intelligent reasoning system to estimate energy consumption and optimize cutting parameters toward sustainable machining. Journal of Cleaner Production, 261, 121160.CrossRef Xu, L., Huang, C., Li, C., Wang, J., Liu, H., & Wang, X. (2020b). A novel intelligent reasoning system to estimate energy consumption and optimize cutting parameters toward sustainable machining. Journal of Cleaner Production, 261, 121160.CrossRef
Zurück zum Zitat Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., Sun, C., & Jiang, Z. (2020). Vibration singularity analysis for milling tool condition monitoring. International Journal of Mechanical Sciences, 166, 105254.CrossRef Yang, B., Guo, K., Liu, J., Sun, J., Song, G., Zhu, S., Sun, C., & Jiang, Z. (2020). Vibration singularity analysis for milling tool condition monitoring. International Journal of Mechanical Sciences, 166, 105254.CrossRef
Zurück zum Zitat Yang, Z., & Yu, Z. (2012). Grinding wheel wear monitoring based on wavelet analysis and support vector machine. International Journal of Advanced Manufacturing Technology, 62, 107–121.CrossRef Yang, Z., & Yu, Z. (2012). Grinding wheel wear monitoring based on wavelet analysis and support vector machine. International Journal of Advanced Manufacturing Technology, 62, 107–121.CrossRef
Zurück zum Zitat Yen, C.-L., Lu, M.-C., & Chen, J.-L. (2013). Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mechanical Systems and Signal Processing, 34, 353–366.CrossRef Yen, C.-L., Lu, M.-C., & Chen, J.-L. (2013). Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting. Mechanical Systems and Signal Processing, 34, 353–366.CrossRef
Zurück zum Zitat Yeo, S. H., Khoo, L. P., & Neo, S. S. (2000). Tool condition monitoring using reflectance of chip surface and neural network. Journal of Intelligent Manufacturing, 11, 507–514.CrossRef Yeo, S. H., Khoo, L. P., & Neo, S. S. (2000). Tool condition monitoring using reflectance of chip surface and neural network. Journal of Intelligent Manufacturing, 11, 507–514.CrossRef
Zurück zum Zitat Yurtkuran, H., Korkmaz, M. E., & Günay, M. (2016). Modelling and optimization of the surface roughness in high speed hard turning with coated and uncoated CBN insert. Gazi University Journal of Science, 29(4), 987–995. Yurtkuran, H., Korkmaz, M. E., & Günay, M. (2016). Modelling and optimization of the surface roughness in high speed hard turning with coated and uncoated CBN insert. Gazi University Journal of Science, 29(4), 987–995.
Zurück zum Zitat Zafar, T., Kamal, K., Sheikh, Z., Mathavan, S., Ali, U., & Hashmi, H. (2017). A neural network based approach for background noise reduction in airborne acoustic emission of a machining process. Journal of Mechanical Science and Technology, 31, 3171–3182.CrossRef Zafar, T., Kamal, K., Sheikh, Z., Mathavan, S., Ali, U., & Hashmi, H. (2017). A neural network based approach for background noise reduction in airborne acoustic emission of a machining process. Journal of Mechanical Science and Technology, 31, 3171–3182.CrossRef
Zurück zum Zitat Zhang, B., & Shin, Y. C. (2018). A multimodal intelligent monitoring system for turning processes. Journal of Manufacturing Processes, 35, 547–558.CrossRef Zhang, B., & Shin, Y. C. (2018). A multimodal intelligent monitoring system for turning processes. Journal of Manufacturing Processes, 35, 547–558.CrossRef
Zurück zum Zitat Zhang, C., Yao, X., Zhang, J., & Jin, H. (2016). Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operations. Sensors, 16, 795.CrossRef Zhang, C., Yao, X., Zhang, J., & Jin, H. (2016). Tool condition monitoring and remaining useful life prognostic based on a wireless sensor in dry milling operations. Sensors, 16, 795.CrossRef
Zurück zum Zitat Zhang, K., Yuan, H., & Nie, P. (2015). A method for tool condition monitoring based on sensor fusion. Journal of Intelligent Manufacturing, 26, 1011–1026.CrossRef Zhang, K., Yuan, H., & Nie, P. (2015). A method for tool condition monitoring based on sensor fusion. Journal of Intelligent Manufacturing, 26, 1011–1026.CrossRef
Zurück zum Zitat Zhu, K., San Wong, Y., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49, 537–553.CrossRef Zhu, K., San Wong, Y., & Hong, G. S. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. International Journal of Machine Tools and Manufacture, 49, 537–553.CrossRef
Zurück zum Zitat Zuperl, U., Cus, F., & Reibenschuh, M. (2012). Modeling and adaptive force control of milling by using artificial techniques. Journal of Intelligent Manufacturing, 23, 1805–1815.CrossRef Zuperl, U., Cus, F., & Reibenschuh, M. (2012). Modeling and adaptive force control of milling by using artificial techniques. Journal of Intelligent Manufacturing, 23, 1805–1815.CrossRef
Metadaten
Titel
Artificial intelligence systems for tool condition monitoring in machining: analysis and critical review
verfasst von
Danil Yu Pimenov
Andres Bustillo
Szymon Wojciechowski
Vishal S. Sharma
Munish K. Gupta
Mustafa Kuntoğlu
Publikationsdatum
12.03.2022
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 5/2023
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-022-01923-2

Weitere Artikel der Ausgabe 5/2023

Journal of Intelligent Manufacturing 5/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.