Skip to main content
Erschienen in: Journal of Materials Science 13/2021

01.02.2021 | Energy materials

Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries

verfasst von: Hou-Zheng Xiang, Hong-Xiang Xie, Yu-Xue Chen, Hui Zhang, Aiqin Mao, Cui-Hong Zheng

Erschienen in: Journal of Materials Science | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Owing to their entropy stabilization and multi-principal effect, transition-metal-based high-entropy oxides are attracting extensive attention as an effective family of anode materials for lithium ion batteries (LIBs). Herein, spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ HEO nanocrystalline powder with high concentration of oxygen vacancies is successfully prepared by the method of solution combustion synthesis (SCS), and explored as a novel anode active material for LIBs. As compared to (CoCrFeMnNi)0.6O4-δ, the inactive Al3+-doped (Al0.2CoCrFeMnNi)0.58O4-δ anode provides more than twice the reversible specific capacity of 554 mAh g−1 after 500 cycles at a specific current of 200 mA g−1, accompanied with good rate capability (634 mAh g−1 even at 3 A g−1) and cycling performance. The enhanced electrochemical properties can be attributed to that inactive Al3+-doping resulted into the more space for Li+ intercalation and deintercalation, enhanced structural stability, and the improved electronic conductivity and Li+ diffusivity.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhou L, Zhang K, Hu Z et al (2018) Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv Energy Mater 8:1701415CrossRef Zhou L, Zhang K, Hu Z et al (2018) Recent developments on and prospects for electrode materials with hierarchical structures for lithium-ion batteries. Adv Energy Mater 8:1701415CrossRef
2.
Zurück zum Zitat Nitta N, Wu F, Lee JT et al (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef Nitta N, Wu F, Lee JT et al (2015) Li-ion battery materials: present and future. Mater Today 18:252–264CrossRef
3.
Zurück zum Zitat Gao Y, Yin L, Kim SJ et al (2019) Enhanced lithium storage by ZnFe2O4 nanofibers as anode materials for lithium-ion battery. Electrochim Acta 296:565–574CrossRef Gao Y, Yin L, Kim SJ et al (2019) Enhanced lithium storage by ZnFe2O4 nanofibers as anode materials for lithium-ion battery. Electrochim Acta 296:565–574CrossRef
4.
Zurück zum Zitat Xu S, Hessel CM, Ren H et al (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632–637CrossRef Xu S, Hessel CM, Ren H et al (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632–637CrossRef
5.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
6.
Zurück zum Zitat Wang W, Ai T, Li W et al (2017) Photoelectric and electrochemical performance of Al-doped ZnO Thin films hydrothermally grown on graphene-coated polyethylene terephthalate bilayer flexible substrates. J Phys Chem C 121:28148–28157CrossRef Wang W, Ai T, Li W et al (2017) Photoelectric and electrochemical performance of Al-doped ZnO Thin films hydrothermally grown on graphene-coated polyethylene terephthalate bilayer flexible substrates. J Phys Chem C 121:28148–28157CrossRef
7.
Zurück zum Zitat Han X, Cui Y, Liu H (2020) Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. J Alloys Compd 814:152348CrossRef Han X, Cui Y, Liu H (2020) Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries. J Alloys Compd 814:152348CrossRef
8.
Zurück zum Zitat Ma Y, Fang C, Ding B et al (2013) Fe-doped MnxOy with hierarchical porosity as a high-performance lithium-ion battery anode. Adv Mater 25:4646–4652CrossRef Ma Y, Fang C, Ding B et al (2013) Fe-doped MnxOy with hierarchical porosity as a high-performance lithium-ion battery anode. Adv Mater 25:4646–4652CrossRef
9.
Zurück zum Zitat Woo SW, Myung ST, Bang H et al (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54:3851–3856CrossRef Woo SW, Myung ST, Bang H et al (2009) Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution. Electrochim Acta 54:3851–3856CrossRef
10.
Zurück zum Zitat Huang B, Li X, Wang Z et al (2014) Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceram Int 40:13223–13230CrossRef Huang B, Li X, Wang Z et al (2014) Synthesis of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries. Ceram Int 40:13223–13230CrossRef
11.
Zurück zum Zitat Wang D, Zhou W, Zhang R et al (2018) MOF-derived Zn–Mn mixed oxides@carbon hollow disks with robust hierarchical structure for high-performance lithium-ion batteries. J Mater Chem A 6:2974–2983CrossRef Wang D, Zhou W, Zhang R et al (2018) MOF-derived Zn–Mn mixed oxides@carbon hollow disks with robust hierarchical structure for high-performance lithium-ion batteries. J Mater Chem A 6:2974–2983CrossRef
12.
Zurück zum Zitat Liu H, Zheng H, Li L et al (2018) Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling. Adv Mater Interf 5:1701255CrossRef Liu H, Zheng H, Li L et al (2018) Surface-coating-mediated electrochemical performance in CuO nanowires during the sodiation-desodiation cycling. Adv Mater Interf 5:1701255CrossRef
13.
Zurück zum Zitat Sarkar A, Velasco L, Wang D et al (2018) High entropy oxides for reversible energy storage. Nat Commun 9:3400CrossRef Sarkar A, Velasco L, Wang D et al (2018) High entropy oxides for reversible energy storage. Nat Commun 9:3400CrossRef
14.
Zurück zum Zitat Qiu N, Chen H, Yang Z et al (2019) A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloys Compd 777:767–774CrossRef Qiu N, Chen H, Yang Z et al (2019) A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance. J Alloys Compd 777:767–774CrossRef
15.
Zurück zum Zitat Chen H, Qiu N, Wu B et al (2019) Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties. RSC Adv 9:28908–28915CrossRef Chen H, Qiu N, Wu B et al (2019) Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties. RSC Adv 9:28908–28915CrossRef
16.
Zurück zum Zitat Sarkar A, Wang Q, Schiele A et al (2019) High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater 31:1806236CrossRef Sarkar A, Wang Q, Schiele A et al (2019) High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater 31:1806236CrossRef
17.
Zurück zum Zitat Wang Q, Sarkar A, Li Z et al (2019) High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem Commun 100:121–125CrossRef Wang Q, Sarkar A, Li Z et al (2019) High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochem Commun 100:121–125CrossRef
18.
Zurück zum Zitat Chen H, Qiu N, Wu B et al (2020) A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC Adv 10:9736–9744CrossRef Chen H, Qiu N, Wu B et al (2020) A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries. RSC Adv 10:9736–9744CrossRef
19.
Zurück zum Zitat Bérardan D, Franger S, Meena AK et al (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A 4:9536–9541CrossRef Bérardan D, Franger S, Meena AK et al (2016) Room temperature lithium superionic conductivity in high entropy oxides. J Mater Chem A 4:9536–9541CrossRef
20.
Zurück zum Zitat Wang D, Jiang S, Duan C et al (2020) Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J Alloys Compd 844:156158CrossRef Wang D, Jiang S, Duan C et al (2020) Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J Alloys Compd 844:156158CrossRef
21.
Zurück zum Zitat Mao A, Quan F, Xiang H-Z et al (2019) Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J Mol Struct 1194:11–18CrossRef Mao A, Quan F, Xiang H-Z et al (2019) Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J Mol Struct 1194:11–18CrossRef
22.
Zurück zum Zitat Xiang H-Z, Xie H-X, Mao A et al (2020) Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis. Int J Mater Res 111:246–249CrossRef Xiang H-Z, Xie H-X, Mao A et al (2020) Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis. Int J Mater Res 111:246–249CrossRef
23.
Zurück zum Zitat Mao A, Xiang H-Z, Zhang Z-G et al (2020) A new class of spinel high-entropy oxides with controllable magnetic properties. J Magn Magn Mater 497:165884CrossRef Mao A, Xiang H-Z, Zhang Z-G et al (2020) A new class of spinel high-entropy oxides with controllable magnetic properties. J Magn Magn Mater 497:165884CrossRef
24.
Zurück zum Zitat Xiang H, Xie H, W LI, et al (2020) Synthesis and electrochemical performance investigation of spinel-type high-entropy oxides. Chem J Chin U 41:1801–1809 Xiang H, Xie H, W LI, et al (2020) Synthesis and electrochemical performance investigation of spinel-type high-entropy oxides. Chem J Chin U 41:1801–1809
25.
Zurück zum Zitat Mao A, Xie H-X, Xiang H-Z et al (2020) A novel six-component spinel-structure high-entropy oxide with ferrimagnetic property. J Magn Magn Mater 503:166594CrossRef Mao A, Xie H-X, Xiang H-Z et al (2020) A novel six-component spinel-structure high-entropy oxide with ferrimagnetic property. J Magn Magn Mater 503:166594CrossRef
26.
Zurück zum Zitat Dąbrowa J, Stygar M, Mikuła A et al (2018) Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett 216:32–36CrossRef Dąbrowa J, Stygar M, Mikuła A et al (2018) Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater Lett 216:32–36CrossRef
27.
Zurück zum Zitat Wang H, Gao R, Li Z et al (2018) Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material. Inorg Chem 57:5249–5257CrossRef Wang H, Gao R, Li Z et al (2018) Different effects of Al substitution for Mn or Fe on the structure and electrochemical properties of Na0.67Mn0.5Fe0.5O2 as a sodium ion battery cathode material. Inorg Chem 57:5249–5257CrossRef
28.
Zurück zum Zitat Mo M, Hui KS, Hong X et al (2014) Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5V lithium ion batteries. Appl Surf Sci 290:412–418CrossRef Mo M, Hui KS, Hong X et al (2014) Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5V lithium ion batteries. Appl Surf Sci 290:412–418CrossRef
29.
Zurück zum Zitat Xiang M, Su C-W, Feng L et al (2014) Rapid synthesis of high-cycling performance LiMgxMn2–xO4 (x ≤ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim Acta 125:524–529CrossRef Xiang M, Su C-W, Feng L et al (2014) Rapid synthesis of high-cycling performance LiMgxMn2–xO4 (x ≤ 0.20) cathode materials by a low-temperature solid-state combustion method. Electrochim Acta 125:524–529CrossRef
30.
Zurück zum Zitat Manikandan A, Durka M, Seevakan K et al (2015) A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1−xFe2O4 (0.0≤x≤0.5) nanophotocatalysts. J Supercond Nov Magn 28:1405–1416CrossRef Manikandan A, Durka M, Seevakan K et al (2015) A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1−xFe2O4 (0.0≤x≤0.5) nanophotocatalysts. J Supercond Nov Magn 28:1405–1416CrossRef
31.
Zurück zum Zitat Ashok A, Kumar A, Bhosale RR et al (2018) Combustion synthesis of bifunctional LaMO3 (M=Cr, Mn, Fe Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J Electroanal Chem 809:22–30CrossRef Ashok A, Kumar A, Bhosale RR et al (2018) Combustion synthesis of bifunctional LaMO3 (M=Cr, Mn, Fe Co, Ni) perovskites for oxygen reduction and oxygen evolution reaction in alkaline media. J Electroanal Chem 809:22–30CrossRef
32.
Zurück zum Zitat Khort A, Podbolotov K, Serrano García R et al (2018) One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg Chem 57:1464–1473CrossRef Khort A, Podbolotov K, Serrano García R et al (2018) One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg Chem 57:1464–1473CrossRef
33.
Zurück zum Zitat Lin J-Y, Hsu C-C, Ho H-P et al (2013) Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim Acta 87:126–132CrossRef Lin J-Y, Hsu C-C, Ho H-P et al (2013) Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim Acta 87:126–132CrossRef
34.
Zurück zum Zitat Sanchez JS, Pendashteh A, Palma J et al (2018) Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim Acta 279:44–56CrossRef Sanchez JS, Pendashteh A, Palma J et al (2018) Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim Acta 279:44–56CrossRef
35.
Zurück zum Zitat Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730CrossRef Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730CrossRef
36.
Zurück zum Zitat Zhu YM, Zhang L, Zhao BT et al (2019) Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides. Adv Funct Mater 29:1901783 Zhu YM, Zhang L, Zhao BT et al (2019) Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides. Adv Funct Mater 29:1901783
37.
Zurück zum Zitat Fang D-l, Wang Z-b, Yang P-h et al (2006) Preparation of ultra-fine nickel manganite powders and ceramics by a solid-state coordination reaction. J Am Ceram Soc 89:230–235CrossRef Fang D-l, Wang Z-b, Yang P-h et al (2006) Preparation of ultra-fine nickel manganite powders and ceramics by a solid-state coordination reaction. J Am Ceram Soc 89:230–235CrossRef
38.
Zurück zum Zitat Phan TN, Gong MK, Thangavel R et al (2019) Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures. J Alloys Compd 780:90–97CrossRef Phan TN, Gong MK, Thangavel R et al (2019) Enhanced electrochemical performance for EDLC using ordered mesoporous carbons (CMK-3 and CMK-8): Role of mesopores and mesopore structures. J Alloys Compd 780:90–97CrossRef
39.
Zurück zum Zitat Zou F, Hu X, Li Z et al (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26:6622–6628CrossRef Zou F, Hu X, Li Z et al (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26:6622–6628CrossRef
40.
Zurück zum Zitat Fang D-L, Zhao Y-C, Wang S-S et al (2020) Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction. Electrochim Acta 330:135346CrossRef Fang D-L, Zhao Y-C, Wang S-S et al (2020) Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction. Electrochim Acta 330:135346CrossRef
41.
Zurück zum Zitat Lu C-H, Lin S-W (2001) Influence of the particle size on the electrochemical properties of lithium manganese oxide. J Power Sour 97–98:458–460CrossRef Lu C-H, Lin S-W (2001) Influence of the particle size on the electrochemical properties of lithium manganese oxide. J Power Sour 97–98:458–460CrossRef
42.
Zurück zum Zitat Maleski K, Ren CE, Zhao M-Q et al (2018) Size-dependent physical and electrochemical properties of two-dimensional mxene flakes. ACS Appl Mater Inter 10:24491–24498CrossRef Maleski K, Ren CE, Zhao M-Q et al (2018) Size-dependent physical and electrochemical properties of two-dimensional mxene flakes. ACS Appl Mater Inter 10:24491–24498CrossRef
43.
Zurück zum Zitat Hu S, Wang C, Zhou L et al (2018) Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries. Ceram Int 44:14995–15000CrossRef Hu S, Wang C, Zhou L et al (2018) Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries. Ceram Int 44:14995–15000CrossRef
44.
Zurück zum Zitat Bao S-J, Liang Y-Y, Zhou W-J et al (2006) Synthesis and electrochemical properties of LiAl0.1Mn1.9O4 by microwave-assisted sol–gel method. J Power Sour 154:239–245CrossRef Bao S-J, Liang Y-Y, Zhou W-J et al (2006) Synthesis and electrochemical properties of LiAl0.1Mn1.9O4 by microwave-assisted sol–gel method. J Power Sour 154:239–245CrossRef
45.
Zurück zum Zitat Li Y-C, Xiang W, Wu Z-G et al (2018) Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim Acta 291:84–94CrossRef Li Y-C, Xiang W, Wu Z-G et al (2018) Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim Acta 291:84–94CrossRef
46.
Zurück zum Zitat Cao K, Jin T, Yang L et al (2017) Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater Chem Front 1:2213–2242CrossRef Cao K, Jin T, Yang L et al (2017) Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater Chem Front 1:2213–2242CrossRef
47.
Zurück zum Zitat Nguyen TX, Patra J, Chang J-K et al (2020) High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. J Mater Chem A 8:18963–18973CrossRef Nguyen TX, Patra J, Chang J-K et al (2020) High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. J Mater Chem A 8:18963–18973CrossRef
48.
Zurück zum Zitat Li C, Li G, Guan X (2018) Synthesis and electrochemical performance of micro-nano structured LiFe1−xMnxPO4/C (0 ≤x ≤ 0.05) cathode for lithium-ion batteries. J Energy Chem 27:923–929CrossRef Li C, Li G, Guan X (2018) Synthesis and electrochemical performance of micro-nano structured LiFe1−xMnxPO4/C (0 ≤x ≤ 0.05) cathode for lithium-ion batteries. J Energy Chem 27:923–929CrossRef
Metadaten
Titel
Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4-δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries
verfasst von
Hou-Zheng Xiang
Hong-Xiang Xie
Yu-Xue Chen
Hui Zhang
Aiqin Mao
Cui-Hong Zheng
Publikationsdatum
01.02.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05805-5

Weitere Artikel der Ausgabe 13/2021

Journal of Materials Science 13/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.