Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2018

09.10.2017

An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents

verfasst von: Maryam Ghiyasiyan-Arani, Masoud Salavati-Niasari, Maryam Masjedi-Arani, Fatemeh Mazloom

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Iron vanadate (FeVO4) nanoparticles have been successfully prepared in the presence of aminoacids as green capping agents via a simple sonochemical method, for the first time. The effect of ultrasonic irradiations and different aminoacids on the size and optical properties of nanostructures were investigated. The as-obtained FeVO4 nanostructure products were characterized by numerous techniques such as XRD, SEM, TEM, FT-IR EDX and UV–Vis spectroscopy. The photocatalytic activity of FeVO4 nano and bulk structures were compared by degradation of phenol red anionic dye in aqueous solution under UV-light irradiation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Nithya, R.K. Selvan, Synthesis, electrical and dielectric properties of FeVO4 nanoparticles. Phys. B 406, 24–29 (2011)CrossRef V. Nithya, R.K. Selvan, Synthesis, electrical and dielectric properties of FeVO4 nanoparticles. Phys. B 406, 24–29 (2011)CrossRef
2.
Zurück zum Zitat A. Ghosh, S. Bhattacharya, A. Ghosh, Optical and other structural properties of some zinc vanadate semiconducting glasses. J. Alloys Compd. 490, 480–483 (2010)CrossRef A. Ghosh, S. Bhattacharya, A. Ghosh, Optical and other structural properties of some zinc vanadate semiconducting glasses. J. Alloys Compd. 490, 480–483 (2010)CrossRef
3.
Zurück zum Zitat G. Yang, H. Cui, G. Yang, C. Wang, Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent li-storage properties, and investigation of electrochemical mechanism. ACS Nano 8, 4474–4487 (2014)CrossRef G. Yang, H. Cui, G. Yang, C. Wang, Self-assembly of Co3V2O8 multilayered nanosheets: controllable synthesis, excellent li-storage properties, and investigation of electrochemical mechanism. ACS Nano 8, 4474–4487 (2014)CrossRef
4.
Zurück zum Zitat M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, Novel Schiff base ligand-assisted in-situ synthesis of Cu3V2O8 nanoparticles via a simple precipitation approach. J. Mol. Liq. 216, 59–66 (2016)CrossRef M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, Novel Schiff base ligand-assisted in-situ synthesis of Cu3V2O8 nanoparticles via a simple precipitation approach. J. Mol. Liq. 216, 59–66 (2016)CrossRef
5.
Zurück zum Zitat M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalyti c activity. J. Mater. Sci. Mat. Electron. 27(5), 4871–4878 (2016) M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, Facile synthesis, characterization and optical properties of copper vanadate nanostructures for enhanced photocatalyti c activity. J. Mater. Sci. Mat. Electron. 27(5), 4871–4878 (2016)
6.
Zurück zum Zitat F. Mazloom, M. Masjedi-Arani, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 214, 46–53 (2016)CrossRef F. Mazloom, M. Masjedi-Arani, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 214, 46–53 (2016)CrossRef
7.
Zurück zum Zitat Y. Luo, X. Xu, X. Tian, Q. Wei, M. Yan, K. Zhao, X. Xu, L. Mai, Facile synthesis of a Co3V2O8 interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. J. Mater. Chem. A 4, 5075–5080 (2016)CrossRef Y. Luo, X. Xu, X. Tian, Q. Wei, M. Yan, K. Zhao, X. Xu, L. Mai, Facile synthesis of a Co3V2O8 interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. J. Mater. Chem. A 4, 5075–5080 (2016)CrossRef
8.
Zurück zum Zitat Z. Fang, F. Fan, Z. Ding, C. Wang, L. Long, S. Hao, Layered iron orthovanadate microrods as cathode for lithium ion batteries with enhanced cycle performance. Mater. Res. Bull. 48, 1737–1740 (2013)CrossRef Z. Fang, F. Fan, Z. Ding, C. Wang, L. Long, S. Hao, Layered iron orthovanadate microrods as cathode for lithium ion batteries with enhanced cycle performance. Mater. Res. Bull. 48, 1737–1740 (2013)CrossRef
9.
Zurück zum Zitat F. Liu, H. He, Z. Lian, W. Shan, L. Xie, K. Asakura, W. Yang, H. Deng, Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. J. Catal. 307, 340–351 (2013)CrossRef F. Liu, H. He, Z. Lian, W. Shan, L. Xie, K. Asakura, W. Yang, H. Deng, Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. J. Catal. 307, 340–351 (2013)CrossRef
10.
Zurück zum Zitat Y. Li, S. Chen, A. Xu, F. Ma, F. Chen, W. Lu, Research on the nanocrystal FeVxOy catalysts for new reaction from propane to propylene and CO. Appl. Surf. Sci. 320, 552–557 (2014)CrossRef Y. Li, S. Chen, A. Xu, F. Ma, F. Chen, W. Lu, Research on the nanocrystal FeVxOy catalysts for new reaction from propane to propylene and CO. Appl. Surf. Sci. 320, 552–557 (2014)CrossRef
11.
Zurück zum Zitat J. Li, W. Zhao, Y. Guo, Z. Wei, M. Han, H. He, S. Yang, C. Sun, Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Appl. Surf. Sci. 351, 270–279 (2015)CrossRef J. Li, W. Zhao, Y. Guo, Z. Wei, M. Han, H. He, S. Yang, C. Sun, Facile synthesis and high activity of novel BiVO4/FeVO4 heterojunction photocatalyst for degradation of metronidazole. Appl. Surf. Sci. 351, 270–279 (2015)CrossRef
12.
Zurück zum Zitat Y. Min, K. Zhang, Y. Chen, Y. Zhang, Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants. Chem. Eng. J. 175, 76–83 (2011)CrossRef Y. Min, K. Zhang, Y. Chen, Y. Zhang, Synthesis of novel visible light responding vanadate/TiO2 heterostructure photocatalysts for application of organic pollutants. Chem. Eng. J. 175, 76–83 (2011)CrossRef
13.
Zurück zum Zitat S.K. Biswas, J.-O. Baeg, Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. Int. J. Hydr. Energy 38, 14451–14457 (2013)CrossRef S.K. Biswas, J.-O. Baeg, Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. Int. J. Hydr. Energy 38, 14451–14457 (2013)CrossRef
14.
Zurück zum Zitat V. Nithya, K. Pandi, Y. Lee, R.K. Selvan, Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim. Acta 167, 97–104 (2015)CrossRef V. Nithya, K. Pandi, Y. Lee, R.K. Selvan, Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim. Acta 167, 97–104 (2015)CrossRef
15.
Zurück zum Zitat N. Yan, Y. Xu, H. Li, W. Chen, The preparation of FeVO4 as a new sort of anode material for lithium ion batteries. Mater. Lett. 165, 223–226 (2016)CrossRef N. Yan, Y. Xu, H. Li, W. Chen, The preparation of FeVO4 as a new sort of anode material for lithium ion batteries. Mater. Lett. 165, 223–226 (2016)CrossRef
16.
Zurück zum Zitat Y.V. Kaneti, Z. Zhang, J. Yue, X. Jiang, A. Yu, Porous FeVO4 nanorods: synthesis, characterization, and gas-sensing properties toward volatile organic compounds. J. Nanopart. Res. 15, 1–15 (2013)CrossRef Y.V. Kaneti, Z. Zhang, J. Yue, X. Jiang, A. Yu, Porous FeVO4 nanorods: synthesis, characterization, and gas-sensing properties toward volatile organic compounds. J. Nanopart. Res. 15, 1–15 (2013)CrossRef
17.
Zurück zum Zitat M. Wang, L.F. Zhang, H.Y. Luan, Synthesis and photocatalytic property of FeVO4 photocatalyst by sol–gel method. Adv. Mater. Res. 328, 1507–1511 (2011) M. Wang, L.F. Zhang, H.Y. Luan, Synthesis and photocatalytic property of FeVO4 photocatalyst by sol–gel method. Adv. Mater. Res. 328, 1507–1511 (2011)
18.
Zurück zum Zitat M.Y. Shad, M. Nouri, A. Salmasifar, H. Sameie, R. Salimi, H.E. Mohammadloo, A.S. Alvani, M. Ashuri, M. Tahriri, Wet-chemical synthesis and electrochemical properties of Ce-doped FeVO4 for use as new anode material in Li-ion batteries. J. Inorg. Organomet. Polym Mater. 23, 1226–1232 (2013)CrossRef M.Y. Shad, M. Nouri, A. Salmasifar, H. Sameie, R. Salimi, H.E. Mohammadloo, A.S. Alvani, M. Ashuri, M. Tahriri, Wet-chemical synthesis and electrochemical properties of Ce-doped FeVO4 for use as new anode material in Li-ion batteries. J. Inorg. Organomet. Polym Mater. 23, 1226–1232 (2013)CrossRef
19.
Zurück zum Zitat Y. Luo, R. Zhang, G. Liu, J. Li, B. Qin, M. Li, S. Chen, Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour. Technol. 102, 3827–3832 (2011)CrossRef Y. Luo, R. Zhang, G. Liu, J. Li, B. Qin, M. Li, S. Chen, Simultaneous degradation of refractory contaminants in both the anode and cathode chambers of the microbial fuel cell. Bioresour. Technol. 102, 3827–3832 (2011)CrossRef
20.
Zurück zum Zitat S.J. Hu, J. Yang, X.H. Liao, Highly Efficient degradation of methylene blue on microwave synthesized FeVO4 nanoparticles photocatalysts under visible-light irradiation, Adv. Mater. Res. 372, 153–157 (2013) S.J. Hu, J. Yang, X.H. Liao, Highly Efficient degradation of methylene blue on microwave synthesized FeVO4 nanoparticles photocatalysts under visible-light irradiation, Adv. Mater. Res. 372, 153–157 (2013)
21.
Zurück zum Zitat Y. Zhao, K. Yao, Q. Cai, Z. Shi, M. Sheng, H. Lin, M. Shao, Hydrothermal route to metastable phase FeVO4 ultrathin nanosheets with exposed {010} facets: synthesis, photocatalysis and gas-sensing. CrystEngComm 16, 270–276 (2014)CrossRef Y. Zhao, K. Yao, Q. Cai, Z. Shi, M. Sheng, H. Lin, M. Shao, Hydrothermal route to metastable phase FeVO4 ultrathin nanosheets with exposed {010} facets: synthesis, photocatalysis and gas-sensing. CrystEngComm 16, 270–276 (2014)CrossRef
22.
Zurück zum Zitat P.I. Cowin, R. Lan, L. Zhang, C.T. Petit, A. Kraft, S. Tao, Study on conductivity and redox stability of iron orthovanadate. Mater. Chem. Phys. 126, 614–618 (2011)CrossRef P.I. Cowin, R. Lan, L. Zhang, C.T. Petit, A. Kraft, S. Tao, Study on conductivity and redox stability of iron orthovanadate. Mater. Chem. Phys. 126, 614–618 (2011)CrossRef
23.
Zurück zum Zitat M. Casanova, L. Nodari, A. Sagar, K. Schermanz, A. Trovarelli, Preparation, characterization and NH3–SCR activity of FeVO4 supported on TiO2–WO3–SiO2. Appl. Catal. B 176, 699–708 (2015)CrossRef M. Casanova, L. Nodari, A. Sagar, K. Schermanz, A. Trovarelli, Preparation, characterization and NH3–SCR activity of FeVO4 supported on TiO2–WO3–SiO2. Appl. Catal. B 176, 699–708 (2015)CrossRef
24.
Zurück zum Zitat T. Lehnen, M. Valldor, D. Nižňanský, S. Mathur, Nanorods and their integration as active material in gas-sensing devices. J. Mater. Chem. A 2, 1862–1868 (2014)CrossRef T. Lehnen, M. Valldor, D. Nižňanský, S. Mathur, Nanorods and their integration as active material in gas-sensing devices. J. Mater. Chem. A 2, 1862–1868 (2014)CrossRef
25.
Zurück zum Zitat L.-f.. Zhang, J. Zhou, C.-y.. Zhang, pH-controlled growth of ultrathin iron vanadium oxide (FeV3O8) nanoplatelets with high visible-light photo-catalytic activity. J. Mater. Chem. A 2, 14903–14907 (2014)CrossRef L.-f.. Zhang, J. Zhou, C.-y.. Zhang, pH-controlled growth of ultrathin iron vanadium oxide (FeV3O8) nanoplatelets with high visible-light photo-catalytic activity. J. Mater. Chem. A 2, 14903–14907 (2014)CrossRef
26.
Zurück zum Zitat M. Masjedi-Arani, M. Salavati-Niasari, A simple sonochemical approach for synthesis and characterization of Zn2SiO4 nanostructures. Ultrason. Sonochem. 29, 226–235 (2016)CrossRef M. Masjedi-Arani, M. Salavati-Niasari, A simple sonochemical approach for synthesis and characterization of Zn2SiO4 nanostructures. Ultrason. Sonochem. 29, 226–235 (2016)CrossRef
27.
Zurück zum Zitat M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrason. Sonochem. 23, 246–256 (2015)CrossRef M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, S.M. Hosseinpour-Mashkani, A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrason. Sonochem. 23, 246–256 (2015)CrossRef
28.
Zurück zum Zitat F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013)CrossRef F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013)CrossRef
29.
Zurück zum Zitat B. Ozturk, G.S.P. Soylu, Synthesis of surfactant-assisted FeVO4 nanostructure: characterization and photocatalytic degradation of phenol. J. Mol. Catal. A 398, 65–71 (2015)CrossRef B. Ozturk, G.S.P. Soylu, Synthesis of surfactant-assisted FeVO4 nanostructure: characterization and photocatalytic degradation of phenol. J. Mol. Catal. A 398, 65–71 (2015)CrossRef
30.
Zurück zum Zitat V. Nithya, R.K. Selvan, C. Sanjeeviraja, D.M. Radheep, S. Arumugam, Synthesis and characterization of FeVO4 nanoparticles. Mater. Res. Bull. 46, 1654–1658 (2011)CrossRef V. Nithya, R.K. Selvan, C. Sanjeeviraja, D.M. Radheep, S. Arumugam, Synthesis and characterization of FeVO4 nanoparticles. Mater. Res. Bull. 46, 1654–1658 (2011)CrossRef
31.
Zurück zum Zitat M. Masjedi-Arani, M. Salavati-Niasari, Effect of carbohydrate sugars as a capping agent on the size and morphology of pure Zn2SnO4 nanostructures and their optical properties. Mater. Lett. 174, 71–74 (2016)CrossRef M. Masjedi-Arani, M. Salavati-Niasari, Effect of carbohydrate sugars as a capping agent on the size and morphology of pure Zn2SnO4 nanostructures and their optical properties. Mater. Lett. 174, 71–74 (2016)CrossRef
32.
Zurück zum Zitat F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice. Mater. Lett. 100, 133–136 (2013)CrossRef F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice. Mater. Lett. 100, 133–136 (2013)CrossRef
33.
Zurück zum Zitat M. Masjedi-Arani, M. Salavati-Niasari, A simple solid-state approach for synthesis and characterization of CdO–ZrO2–CdZrO3 nanocomposites. J. Mater. Sci. 26, 2316–2322 (2015) M. Masjedi-Arani, M. Salavati-Niasari, A simple solid-state approach for synthesis and characterization of CdO–ZrO2–CdZrO3 nanocomposites. J. Mater. Sci. 26, 2316–2322 (2015)
34.
Zurück zum Zitat R.V. Kumar, Y. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12, 2301–2305 (2000)CrossRef R.V. Kumar, Y. Diamant, A. Gedanken, Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem. Mater. 12, 2301–2305 (2000)CrossRef
35.
Zurück zum Zitat S. Yuvaraj, R.K. Selvan, V.B. Kumar, I. Perelshtein, A. Gedanken, S. Isakkimuthu, S. Arumugam, Sonochemical synthesis, structural, magnetic and grain size dependent electrical properties of NdVO4 nanoparticles. Ultrason. Sonochem. 21, 599–605 (2014)CrossRef S. Yuvaraj, R.K. Selvan, V.B. Kumar, I. Perelshtein, A. Gedanken, S. Isakkimuthu, S. Arumugam, Sonochemical synthesis, structural, magnetic and grain size dependent electrical properties of NdVO4 nanoparticles. Ultrason. Sonochem. 21, 599–605 (2014)CrossRef
36.
Zurück zum Zitat J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solid. B 15, 627–637 (1966)CrossRef J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solid. B 15, 627–637 (1966)CrossRef
37.
Zurück zum Zitat M.C. Hidalgo, M. Aguilar, M. Maicu, J.A. Navío, G. Colón, Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catal. Today 129, 50–58 (2007)CrossRef M.C. Hidalgo, M. Aguilar, M. Maicu, J.A. Navío, G. Colón, Hydrothermal preparation of highly photoactive TiO2 nanoparticles. Catal. Today 129, 50–58 (2007)CrossRef
38.
Zurück zum Zitat F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material. J. Phys. Chem. Solids 69, 1820–1828 (2008)CrossRef F.M. Hossain, L. Sheppard, J. Nowotny, G.E. Murch, Optical properties of anatase and rutile titanium dioxide: Ab initio calculations for pure and anion-doped material. J. Phys. Chem. Solids 69, 1820–1828 (2008)CrossRef
39.
Zurück zum Zitat M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 509, 4098–4103 (2011)CrossRef M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 509, 4098–4103 (2011)CrossRef
40.
Zurück zum Zitat D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20, 3970–3974 (2014)CrossRef D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch, A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA-based magnetic nanocomposite. J. Ind. Eng. Chem. 20, 3970–3974 (2014)CrossRef
41.
Zurück zum Zitat M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron 35, 149–153 (2012)CrossRef M. Salavati-Niasari, D. Ghanbari, M.R. Loghman-Estarki, Star-shaped PbS nanocrystals prepared by hydrothermal process in the presence of thioglycolic acid. Polyhedron 35, 149–153 (2012)CrossRef
42.
Zurück zum Zitat M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO nanocrystals via decomposition of lead oxalate. Polyhedron 28, 2263–2267 (2009)CrossRef M. Salavati-Niasari, F. Mohandes, F. Davar, Preparation of PbO nanocrystals via decomposition of lead oxalate. Polyhedron 28, 2263–2267 (2009)CrossRef
43.
Zurück zum Zitat M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Flexible ligand synthesis, characterization and catalytic oxidation of cyclohexane with host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of tetrahydro-salophen) nanocomposite materials. Microporous Mesoporous Mater. 116, 77–85 (2008)CrossRef M. Salavati-Niasari, M. Shakouri-Arani, F. Davar, Flexible ligand synthesis, characterization and catalytic oxidation of cyclohexane with host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of tetrahydro-salophen) nanocomposite materials. Microporous Mesoporous Mater. 116, 77–85 (2008)CrossRef
44.
Zurück zum Zitat M. Salavati-Niasari, Host (nanocavity of zeolite-Y)–guest (tetraaza [14] annulene copper(II) complexes) nanocomposite materials: synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A 245, 192–199 (2006)CrossRef M. Salavati-Niasari, Host (nanocavity of zeolite-Y)–guest (tetraaza [14] annulene copper(II) complexes) nanocomposite materials: synthesis, characterization and liquid phase oxidation of benzyl alcohol. J. Mol. Catal. A 245, 192–199 (2006)CrossRef
45.
Zurück zum Zitat M. Salavati-Niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials. Chem. Lett. 34, 1444–1445 (2005)CrossRef M. Salavati-Niasari, Synthesis and characterization of host (nanodimensional pores of zeolite-Y)–guest [unsaturated 16-membered octaaza–macrocycle manganese(II), cobalt(II), nickel(II), copper(II), and zinc(II) complexes] nanocomposite materials. Chem. Lett. 34, 1444–1445 (2005)CrossRef
46.
Zurück zum Zitat M. Salavati-Niasari, F. Farzaneh, M. Ghandi, Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalyzed by alumina-supported manganese(II) complexes. J. Mol. Catal. A 186, 101–110 (2002)CrossRef M. Salavati-Niasari, F. Farzaneh, M. Ghandi, Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalyzed by alumina-supported manganese(II) complexes. J. Mol. Catal. A 186, 101–110 (2002)CrossRef
47.
Zurück zum Zitat M. Salavati-Niasari, F. Davar, M. Mazaheri, Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis(salicylidene) zinc(II)]. J. Alloys Compd. 470, 502–506 (2009)CrossRef M. Salavati-Niasari, F. Davar, M. Mazaheri, Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis(salicylidene) zinc(II)]. J. Alloys Compd. 470, 502–506 (2009)CrossRef
48.
Zurück zum Zitat M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorg. Chem. Commun. 8, 174–177 (2005)CrossRef M. Salavati-Niasari, Nanoscale microreactor-encapsulation of 18-membered decaaza macrocycle nickel(II) complexes. Inorg. Chem. Commun. 8, 174–177 (2005)CrossRef
49.
Zurück zum Zitat M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper(II) complexes. Chem. Lett. 34, 244–245 (2005)CrossRef M. Salavati-Niasari, Nanodimensional microreactor-encapsulation of 18-membered decaaza macrocycle copper(II) complexes. Chem. Lett. 34, 244–245 (2005)CrossRef
50.
Zurück zum Zitat M. Salavati-Niasari, Zeolite-encapsulation copper(II) complexes with 14-membered hexaaza macrocycles: synthesis, characterization and catalytic activity. J. Mol. Catal. A 217, 87–92 (2004)CrossRef M. Salavati-Niasari, Zeolite-encapsulation copper(II) complexes with 14-membered hexaaza macrocycles: synthesis, characterization and catalytic activity. J. Mol. Catal. A 217, 87–92 (2004)CrossRef
Metadaten
Titel
An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents
verfasst von
Maryam Ghiyasiyan-Arani
Masoud Salavati-Niasari
Maryam Masjedi-Arani
Fatemeh Mazloom
Publikationsdatum
09.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7936-9

Weitere Artikel der Ausgabe 1/2018

Journal of Materials Science: Materials in Electronics 1/2018 Zur Ausgabe

Neuer Inhalt