Skip to main content
Erschienen in: Natural Computing 2/2008

01.06.2008

Abstraction layers for scalable microfluidic biocomputing

verfasst von: William Thies, John Paul Urbanski, Todd Thorsen, Saman Amarasinghe

Erschienen in: Natural Computing | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microfluidic devices are emerging as an attractive technology for automatically orchestrating the reactions needed in a biological computer. Thousands of microfluidic primitives have already been integrated on a single chip, and recent trends indicate that the hardware complexity is increasing at rates comparable to Moore’s Law. As in the case of silicon, it will be critical to develop abstraction layers—such as programming languages and Instruction Set Architectures (ISAs)—that decouple software development from changes in the underlying device technology. Towards this end, this paper presents BioStream, a portable language for describing biology protocols, and the Fluidic ISA, a stable interface for microfluidic chip designers. A novel algorithm translates microfluidic mixing operations from the BioStream layer to the Fluidic ISA. To demonstrate the benefits of these abstraction layers, we build two microfluidic chips that can both execute BioStream code despite significant differences at the device level. We consider this to be an important step towards building scalable biological computers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
lg n denotes log2 n.
 
2
Alternately, BioStream supports a global error tolerance ε that applies to all concentrations.
 
Literatur
Zurück zum Zitat Adar R, Benenson Y, Linshiz G, Rozner A, Tishby N, Shapiro E (2004) Stochastic computing with biomolecular automata. PNAS 101:9960–9965CrossRef Adar R, Benenson Y, Linshiz G, Rozner A, Tishby N, Shapiro E (2004) Stochastic computing with biomolecular automata. PNAS 101:9960–9965CrossRef
Zurück zum Zitat Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024CrossRef Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024CrossRef
Zurück zum Zitat Alfred V. Aho RS, Ullman JD (1988) Compilers: principles, techniques, and tools, 2nd edn. Addison-Wesley Publishing Company, pp 561 Alfred V. Aho RS, Ullman JD (1988) Compilers: principles, techniques, and tools, 2nd edn. Addison-Wesley Publishing Company, pp 561
Zurück zum Zitat Allan L, Morrice N, Brady S, Magee G, Pathak S, Clarke P (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell Biol 5:647–654CrossRef Allan L, Morrice N, Brady S, Magee G, Pathak S, Clarke P (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell Biol 5:647–654CrossRef
Zurück zum Zitat Batten C, Krashinsky R, Knight JT (2004) A scalable cellular logic technology using zinc-finger proteins. In 3rd workshop on non-silicon computing Batten C, Krashinsky R, Knight JT (2004) A scalable cellular logic technology using zinc-finger proteins. In 3rd workshop on non-silicon computing
Zurück zum Zitat Benenson K, Paz-Elitzur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434CrossRef Benenson K, Paz-Elitzur T, Adar R, Keinan E, Livneh Z, Shapiro E (2001) Programmable and autonomous computing machine made of biomolecules. Nature 414:430–434CrossRef
Zurück zum Zitat Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429CrossRef Benenson Y, Gil B, Ben-Dor U, Adar R, Shapiro E (2004) An autonomous molecular computer for logical control of gene expression. Nature 429:423–429CrossRef
Zurück zum Zitat Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296:499–502CrossRef Braich RS, Chelyapov N, Johnson C, Rothemund PWK, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296:499–502CrossRef
Zurück zum Zitat Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol BioSystems 2:97–112CrossRef Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol BioSystems 2:97–112CrossRef
Zurück zum Zitat Chou H, Unger M, Quake S (2001) A microfabricated rotary pump. Biomed Microdevices 3:323–330CrossRef Chou H, Unger M, Quake S (2001) A microfabricated rotary pump. Biomed Microdevices 3:323–330CrossRef
Zurück zum Zitat Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246CrossRef Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246CrossRef
Zurück zum Zitat Ellerby H, Martin S, Ellerby L, Naiem S, Rabizadeh S, Salvesen G, Casiano C, Cashman N, Green D, Bredesen D (1997) Establishment of a cell-free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. Neuroscience 17:6165–6178 Ellerby H, Martin S, Ellerby L, Naiem S, Rabizadeh S, Salvesen G, Casiano C, Cashman N, Green D, Bredesen D (1997) Establishment of a cell-free system of neuronal apoptosis: comparison of premitochondrial, mitochondrial, and postmitochondrial phases. Neuroscience 17:6165–6178
Zurück zum Zitat Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338CrossRef Elowitz M, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338CrossRef
Zurück zum Zitat Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26CrossRef Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26CrossRef
Zurück zum Zitat Ezziane Z (2006) DNA Computing: applications and challenges. Nanotechnology 17:173–198CrossRef Ezziane Z (2006) DNA Computing: applications and challenges. Nanotechnology 17:173–198CrossRef
Zurück zum Zitat Farfel J, Stefanovic D (2005) Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In proceedings of the 11th international meeting on DNA computing, 38–54 Farfel J, Stefanovic D (2005) Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In proceedings of the 11th international meeting on DNA computing, 38–54
Zurück zum Zitat Faulhammer D, Cukras AR, Lipton RJ, Landweber LF (2000) Molecular computation: RNA solutions to chess problems. PNAS 97(4):1385–1389CrossRef Faulhammer D, Cukras AR, Lipton RJ, Landweber LF (2000) Molecular computation: RNA solutions to chess problems. PNAS 97(4):1385–1389CrossRef
Zurück zum Zitat Gascoyne PRC, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309CrossRef Gascoyne PRC, Vykoukal JV, Schwartz JA, Anderson TJ, Vykoukal DM, Current KW, McConaghy C, Becker FF, Andrews C (2004) Dielectrophoresis-based programmable fluidic processors. Lab Chip 4:299–309CrossRef
Zurück zum Zitat Gehani A, Reif J (1999) Micro flow bio-molecular computation. Biosystems 52:197–216CrossRef Gehani A, Reif J (1999) Micro flow bio-molecular computation. Biosystems 52:197–216CrossRef
Zurück zum Zitat Grover WH, Mathies RA (2005) An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. Lab Chip 5:1033–1040CrossRef Grover WH, Mathies RA (2005) An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. Lab Chip 5:1033–1040CrossRef
Zurück zum Zitat Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. PNAS 101(45):15861–15866CrossRef Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. PNAS 101(45):15861–15866CrossRef
Zurück zum Zitat Hong JW, Quake SR (2003) Integrated nanoliter systems. Nature BioTechnol 21(10):1179–1183CrossRef Hong JW, Quake SR (2003) Integrated nanoliter systems. Nature BioTechnol 21(10):1179–1183CrossRef
Zurück zum Zitat Johnson C (2006) Automating the DNA computer to solve n-variable 3-SAT problems. In Proceedings of the 12th international meeting on DNA computing, 360–373 Johnson C (2006) Automating the DNA computer to solve n-variable 3-SAT problems. In Proceedings of the 12th international meeting on DNA computing, 360–373
Zurück zum Zitat King RD, Whelan KE, Jones FM, Reiser PGK, Bryant CH, Muggleton SH, Kell DB, Oliver SG (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427:247–252CrossRef King RD, Whelan KE, Jones FM, Reiser PGK, Bryant CH, Muggleton SH, Kell DB, Oliver SG (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427:247–252CrossRef
Zurück zum Zitat Knight T, Sussman G (1998) Cellular gate technology. In Proceedings of the 1st international conference on unconventional models of computation Knight T, Sussman G (1998) Cellular gate technology. In Proceedings of the 1st international conference on unconventional models of computation
Zurück zum Zitat Lin F, Saadi W, Rhee SW, Wang S-J, Mittalb S, Jeon NL (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 4:164–167CrossRef Lin F, Saadi W, Rhee SW, Wang S-J, Mittalb S, Jeon NL (2004) Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab Chip 4:164–167CrossRef
Zurück zum Zitat Livstone MS, Weiss R, Landweber LF (2006) Automated design and programming of a microfluidic DNA computer. Nat Comput 5:1–13MATHCrossRefMathSciNet Livstone MS, Weiss R, Landweber LF (2006) Automated design and programming of a microfluidic DNA computer. Nat Comput 5:1–13MATHCrossRefMathSciNet
Zurück zum Zitat McCaskill JS (2001) Optically programming DNA computing in microflow reactors. BioSystems 59:125–138CrossRef McCaskill JS (2001) Optically programming DNA computing in microflow reactors. BioSystems 59:125–138CrossRef
Zurück zum Zitat Neils C, Tyree Z, Finlayson B, Folch A (2004) Combinatorial mixing of microfluidic streams. Lab Chip 4:342–350CrossRef Neils C, Tyree Z, Finlayson B, Folch A (2004) Combinatorial mixing of microfluidic streams. Lab Chip 4:342–350CrossRef
Zurück zum Zitat Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449CrossRef Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278:446–449CrossRef
Zurück zum Zitat Paik P, Pamula V, Fair R (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259CrossRef Paik P, Pamula V, Fair R (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259CrossRef
Zurück zum Zitat Pisanti N (1998) DNA computing: a survey. Bull EATCS 64:171–187 Pisanti N (1998) DNA computing: a survey. Bull EATCS 64:171–187
Zurück zum Zitat Pollack M, Fair R, Shenderov A (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726CrossRef Pollack M, Fair R, Shenderov A (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77(11):1725–1726CrossRef
Zurück zum Zitat Ren H, Srinivasan V, Fair R (2003) Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution. Proceedings of the 12th international conference on solid state sensors, actuators, and microsystems, 619–622 Ren H, Srinivasan V, Fair R (2003) Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution. Proceedings of the 12th international conference on solid state sensors, actuators, and microsystems, 619–622
Zurück zum Zitat Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576CrossRef Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576CrossRef
Zurück zum Zitat Somei K, Kaneda S, Fujii T, Murata S (2005) A microfluidic device for DNA tile self-assembly. In Proceedings of the 11th international meeting on DNA computing, 325–335 Somei K, Kaneda S, Fujii T, Murata S (2005) A microfluidic device for DNA tile self-assembly. In Proceedings of the 11th international meeting on DNA computing, 325–335
Zurück zum Zitat Su F, Chakrabarty K (2004) Architectural-level synthesis of digital niicrofluidics-based biochips. In Proceedings of the 2004 international conference on computer aided design, 223–228 Su F, Chakrabarty K (2004) Architectural-level synthesis of digital niicrofluidics-based biochips. In Proceedings of the 2004 international conference on computer aided design, 223–228
Zurück zum Zitat Su F, Chakrabarty K (2005) Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In Proceedings of the 42nd design automation conference 825–830 Su F, Chakrabarty K (2005) Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In Proceedings of the 42nd design automation conference 825–830
Zurück zum Zitat Thies W, Urbanski JP, Thorsen T, Amarasinghe S (2006) Abstraction layers for scalable microfluidic biocomputers. In Proceedings of the 12th international meeting on DNA computing, 308–323 Thies W, Urbanski JP, Thorsen T, Amarasinghe S (2006) Abstraction layers for scalable microfluidic biocomputers. In Proceedings of the 12th international meeting on DNA computing, 308–323
Zurück zum Zitat Thorsen T, Maerkl S, Quake S (2002) Microfluidic large scale integration. Science 298:580–584CrossRef Thorsen T, Maerkl S, Quake S (2002) Microfluidic large scale integration. Science 298:580–584CrossRef
Zurück zum Zitat Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6:96–104CrossRef Urbanski JP, Thies W, Rhodes C, Amarasinghe S, Thorsen T (2006) Digital microfluidics using soft lithography. Lab Chip 6:96–104CrossRef
Zurück zum Zitat van Noort D (2005) A programmable molecular computer in microreactors. In Proceedings of the 11th international meeting on DNA computing, 365–374 van Noort D (2005) A programmable molecular computer in microreactors. In Proceedings of the 11th international meeting on DNA computing, 365–374
Zurück zum Zitat van Noort D, Gast F-U, McCaskill JS (2002) DNA computing in microreactors. In Proceedings of the 8th international meeting on DNA computing, 33–45 van Noort D, Gast F-U, McCaskill JS (2002) DNA computing in microreactors. In Proceedings of the 8th international meeting on DNA computing, 33–45
Zurück zum Zitat van Noort D, Zhang B-T (2004) PDMS valves in DNA computers. In: SPIE international symposium on smart materials, nano-, and micro-smart systems, pp 214–220 van Noort D, Zhang B-T (2004) PDMS valves in DNA computers. In: SPIE international symposium on smart materials, nano-, and micro-smart systems, pp 214–220
Zurück zum Zitat Winfree E (2003) DNA computing by self-assembly. The Bridge 33(4):37–38 Winfree E (2003) DNA computing by self-assembly. The Bridge 33(4):37–38
Zurück zum Zitat Winfree E, Liu F, Wenzler L, Seeman N (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544CrossRef Winfree E, Liu F, Wenzler L, Seeman N (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544CrossRef
Zurück zum Zitat Yamamoto M, Matsuura N, Shiba T, Kawazoe Y, Ohuchi A (2002) Solutions of shortest path problems by concentration control. In Proceedings of the 7th international meeting on DNA computing, 203–212 Yamamoto M, Matsuura N, Shiba T, Kawazoe Y, Ohuchi A (2002) Solutions of shortest path problems by concentration control. In Proceedings of the 7th international meeting on DNA computing, 203–212
Metadaten
Titel
Abstraction layers for scalable microfluidic biocomputing
verfasst von
William Thies
John Paul Urbanski
Todd Thorsen
Saman Amarasinghe
Publikationsdatum
01.06.2008
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2008
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-006-9032-6

Weitere Artikel der Ausgabe 2/2008

Natural Computing 2/2008 Zur Ausgabe

EditorialNotes

Foreword