Skip to main content
Erschienen in: Wireless Networks 6/2020

14.05.2020

Coverage aware face topology structure for wireless sensor network applications

verfasst von: Ahmed M. Khedr, Zaher Al Aghbari, P V Pravija Raj

Erschienen in: Wireless Networks | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Providing effective sensing coverage of an observation area with reduced set of working nodes for maximum duration of time is an important concern for the development of durable and energy efficient WSN applications. A well-organized network structure can greatly promote such requirements. Motivated by the use of computational geometry in network design, we propose a coverage-aware and efficient planar face topology structure (CAFT) for WSN in this paper. Also, a distributed target tracking algorithm is proposed to run on the proposed face structure. Most of the existing works utilize the face based WSNs which are built by generating planarized graphs using Gabriel graph or Relative neighborhood graph in which all the deployed nodes become a part of the created toplogy. In contrast to this, our proposed distributed topology construction method selects and organizes a subset of nodes into faces, ensures coverage and connectivity while retaining the remaining nodes in sleep mode which can reduce redundant communication that may result in extra energy consumption and cost. The sleep nodes can promote durable service time for the WSN as such nodes can act as replacement nodes in case of node faults and failures, reducing coverage hole formation in the WSN, which is crucial in critical tracking applications. The simulation results and comparison with existing techniques prove that the proposed design is effective in reducing the energy consumption and thereby improves the WSN lifetime.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ramson, S. R. J., & Moni, D. J. (2017). Applications of wireless sensor networks—A survey. In 2017 international conference on innovations in electrical, electronics, instrumentation and media technology (ICEEIMT) (pp. 325–329). Ramson, S. R. J., & Moni, D. J. (2017). Applications of wireless sensor networks—A survey. In 2017 international conference on innovations in electrical, electronics, instrumentation and media technology (ICEEIMT) (pp. 325–329).
2.
Zurück zum Zitat Wu, D., Arkhipov, D. I., Kim, M., Talcott, C. L., Regan, A. C., Mccann, J. A., et al. (2016). ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Transactions on Computers, 66, 1–1.MathSciNetMATHCrossRef Wu, D., Arkhipov, D. I., Kim, M., Talcott, C. L., Regan, A. C., Mccann, J. A., et al. (2016). ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing. IEEE Transactions on Computers, 66, 1–1.MathSciNetMATHCrossRef
3.
Zurück zum Zitat Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.MATHCrossRef Wu, D., Bao, L., Regan, A. C., & Talcott, C. L. (2013). Large-scale access scheduling in wireless mesh networks using social centrality. Journal of Parallel and Distributed Computing, 73(8), 1049–1065.MATHCrossRef
4.
Zurück zum Zitat Zhao, Y., Li, Y., Wu, D., & Ge, N. (2017). Overlapping coalition formation game for resource allocation in network coding aided D2D communications. IEEE Transactions on Mobile Computing, 16(12), 3459–3472.CrossRef Zhao, Y., Li, Y., Wu, D., & Ge, N. (2017). Overlapping coalition formation game for resource allocation in network coding aided D2D communications. IEEE Transactions on Mobile Computing, 16(12), 3459–3472.CrossRef
5.
Zurück zum Zitat Ali, A., Ming, Y., Chakraborty, S., & Iram, S. (2017). A comprehensive survey on real-time applications of WSN. Future Internet, 9(4), 77.CrossRef Ali, A., Ming, Y., Chakraborty, S., & Iram, S. (2017). A comprehensive survey on real-time applications of WSN. Future Internet, 9(4), 77.CrossRef
6.
Zurück zum Zitat Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef Aziz, A., Singh, K., Osamy, W., & Khedr, A. M. (2019). Effective algorithm for optimizing compressive sensing in IoT and periodic monitoring applications. Journal of Network and Computer Applications, 126, 12–28.CrossRef
7.
Zurück zum Zitat Dahane, A., & Berrached, N.-E. (2019). Wireless sensor networks: A survey. Mobile, Wireless and Sensor Networks, 1–24. Dahane, A., & Berrached, N.-E. (2019). Wireless sensor networks: A survey. Mobile, Wireless and Sensor Networks, 1–24.
8.
Zurück zum Zitat Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913.CrossRef Mamun, Q. (2012). A qualitative comparison of different logical topologies for wireless sensor networks. Sensors, 12(11), 14887–14913.CrossRef
9.
Zurück zum Zitat Shen, Y., Kim, K. T., Park, J. C., & Youn, H. Y. (2013) Object tracking based on the prediction of trajectory in wireless sensor networks. In 2013 IEEE 10th international conference on high performance computing and communications 2013 IEEE international conference on embedded and ubiquitous computing (pp. 2317–2324). Shen, Y., Kim, K. T., Park, J. C., & Youn, H. Y. (2013) Object tracking based on the prediction of trajectory in wireless sensor networks. In 2013 IEEE 10th international conference on high performance computing and communications 2013 IEEE international conference on embedded and ubiquitous computing (pp. 2317–2324).
10.
Zurück zum Zitat Lu, H., Li, J., & Guizani, M. (2014). Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25, 750–761.CrossRef Lu, H., Li, J., & Guizani, M. (2014). Secure and efficient data transmission for cluster-based wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25, 750–761.CrossRef
11.
Zurück zum Zitat Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access, 6, 77372–77387.CrossRef Osamy, W., Khedr, A. M., Aziz, A., & El-Sawy, A. A. (2018). Cluster-tree routing based entropy scheme for data gathering in wireless sensor networks. IEEE Access, 6, 77372–77387.CrossRef
12.
Zurück zum Zitat Sun, L., Luo, Y., Yu, Y., & Ding, X. (2014). Voronoi diagram generation algorithm based on Delaunay triangulation. Journal of Software, 9(3), 777–784.CrossRef Sun, L., Luo, Y., Yu, Y., & Ding, X. (2014). Voronoi diagram generation algorithm based on Delaunay triangulation. Journal of Software, 9(3), 777–784.CrossRef
13.
Zurück zum Zitat Ruhrup, S., & Stojmenovic, I. (2013). Optimizing communication overhead while reducing path length in beaconless georouting with guaranteed delivery for wireless sensor networks. IEEE Transactions on Computers, 62(12), 2440–2453.MathSciNetMATHCrossRef Ruhrup, S., & Stojmenovic, I. (2013). Optimizing communication overhead while reducing path length in beaconless georouting with guaranteed delivery for wireless sensor networks. IEEE Transactions on Computers, 62(12), 2440–2453.MathSciNetMATHCrossRef
14.
Zurück zum Zitat Bc, P. R. S., & Gc, B. P. (2018). An efficient approach to preserve the network connectivity of WSN by cautiously removing the crossing edges using COLS. Journal of Computer Science and Systems Biology, 11(3). Bc, P. R. S., & Gc, B. P. (2018). An efficient approach to preserve the network connectivity of WSN by cautiously removing the crossing edges using COLS. Journal of Computer Science and Systems Biology, 11(3).
15.
Zurück zum Zitat Tsai, H.-W., Chu, C.-P., & Chen, T.-S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.CrossRef Tsai, H.-W., Chu, C.-P., & Chen, T.-S. (2007). Mobile object tracking in wireless sensor networks. Computer Communications, 30(8), 1811–1825.CrossRef
16.
Zurück zum Zitat Akl, A., Gayraud, T., & Berthou, P. (2011). A metric for evaluating density level of wireless sensor networks. In IFIP wireless days (WD) (pp. 1–3). Akl, A., Gayraud, T., & Berthou, P. (2011). A metric for evaluating density level of wireless sensor networks. In IFIP wireless days (WD) (pp. 1–3).
17.
Zurück zum Zitat Cheng, Y. P., Tang, Y. J., & Tsai, M. J. (2014). LF-GFG: location-free greedy-face-greedy routing with guaranteed delivery and lightweight maintenance cost in a wireless sensor network with changing topology. IEEE Transactions on Wireless Communications, 13(12), 70257036. Cheng, Y. P., Tang, Y. J., & Tsai, M. J. (2014). LF-GFG: location-free greedy-face-greedy routing with guaranteed delivery and lightweight maintenance cost in a wireless sensor network with changing topology. IEEE Transactions on Wireless Communications, 13(12), 70257036.
18.
Zurück zum Zitat Safavi, S. M., Meybodi, M. R., & Esnaashari, M. (2014). Learning automata based face-aware mobicast. Wireless Personal Communications, 77(3), 1923–1933.CrossRef Safavi, S. M., Meybodi, M. R., & Esnaashari, M. (2014). Learning automata based face-aware mobicast. Wireless Personal Communications, 77(3), 1923–1933.CrossRef
19.
Zurück zum Zitat Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetMATHCrossRef Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetMATHCrossRef
20.
Zurück zum Zitat Souza, E. L., Pazzi, R. W., & Nakamura, E. F. (2014). A distributed tracking algorithm for target interception in face-structured sensor networks. In 39th annual IEEE conference on local computer networks. Souza, E. L., Pazzi, R. W., & Nakamura, E. F. (2014). A distributed tracking algorithm for target interception in face-structured sensor networks. In 39th annual IEEE conference on local computer networks.
21.
Zurück zum Zitat Hsu, J.-M., Chen, C.-C., & Li, C.-C. (2012). POOT: An efficient object tracking strategy based on short-term optimistic predictions for facestructured sensor networks. Computers & Mathematics with Applications, 63(2), 391–406.MATHCrossRef Hsu, J.-M., Chen, C.-C., & Li, C.-C. (2012). POOT: An efficient object tracking strategy based on short-term optimistic predictions for facestructured sensor networks. Computers & Mathematics with Applications, 63(2), 391–406.MATHCrossRef
22.
Zurück zum Zitat Banerjee, I., Chanak, P., Rahaman, H., & Samanta, T. (2014). Effective fault detection and routing scheme for wireless sensor networks. Computers & Electrical Engineering, 40(2), 291–306.CrossRef Banerjee, I., Chanak, P., Rahaman, H., & Samanta, T. (2014). Effective fault detection and routing scheme for wireless sensor networks. Computers & Electrical Engineering, 40(2), 291–306.CrossRef
23.
Zurück zum Zitat Płaczek, B. (2014). Communication-aware algorithms for target tracking in wireless sensor networks. In Computer networks communications in computer and information science (pp. 69–78). Płaczek, B. (2014). Communication-aware algorithms for target tracking in wireless sensor networks. In Computer networks communications in computer and information science (pp. 69–78).
24.
Zurück zum Zitat Khedr, A. M., & Osamy, W. (2010). Nonlinear trajectory discovery of a moving target by a wireless sensor network. Journal of Computing and Informatics, 29(5), 1001–1016. Khedr, A. M., & Osamy, W. (2010). Nonlinear trajectory discovery of a moving target by a wireless sensor network. Journal of Computing and Informatics, 29(5), 1001–1016.
25.
Zurück zum Zitat Khedr, A. M., & Osamy, W. (2007). Tracking mobile targets using random sensor networks. The Arabian Journal for Science and Engineering, 32(2B), 301–315.MATH Khedr, A. M., & Osamy, W. (2007). Tracking mobile targets using random sensor networks. The Arabian Journal for Science and Engineering, 32(2B), 301–315.MATH
26.
Zurück zum Zitat Bhuiyan, M. Z. A., Wang, G.-J., Zhang, L., & Peng, Y. (2010). Prediction-based energy-efficient target tracking protocol in wireless sensor networks. Journal of Central South University of Technology, 17(2), 340–348.CrossRef Bhuiyan, M. Z. A., Wang, G.-J., Zhang, L., & Peng, Y. (2010). Prediction-based energy-efficient target tracking protocol in wireless sensor networks. Journal of Central South University of Technology, 17(2), 340–348.CrossRef
27.
Zurück zum Zitat Bhuiyan, M. Z. A., Wang, G., & Wu, J. (2009). Target tracking with monitor and backup sensors in wireless sensor networks. In Proceedings of 18th international conference on computer communications and networks (pp. 1–6). Bhuiyan, M. Z. A., Wang, G., & Wu, J. (2009). Target tracking with monitor and backup sensors in wireless sensor networks. In Proceedings of 18th international conference on computer communications and networks (pp. 1–6).
28.
Zurück zum Zitat Wang, G. J., Bhuiyan, M. Z. A., Cao, J. N., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.CrossRef Wang, G. J., Bhuiyan, M. Z. A., Cao, J. N., & Wu, J. (2014). Detecting movements of a target using face tracking in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 939–949.CrossRef
29.
Zurück zum Zitat Razzaq, A. (2018). An energy efficient and fault tolerant distributed object tracking system using new face-based wireless sensor networks. Master’s thesis, Department of Computer Science, University of Sharjah. Razzaq, A. (2018). An energy efficient and fault tolerant distributed object tracking system using new face-based wireless sensor networks. Master’s thesis, Department of Computer Science, University of Sharjah.
30.
Zurück zum Zitat Razzaq, A., Khedr, A. M., & Aghbari, Z. A. (2018). A redundancy-aware face structure for wireless sensor networks. In: 2018 8th international conference on computer science and information technology (CSIT). Razzaq, A., Khedr, A. M., & Aghbari, Z. A. (2018). A redundancy-aware face structure for wireless sensor networks. In: 2018 8th international conference on computer science and information technology (CSIT).
31.
Zurück zum Zitat Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing, 71(10), 1318–1326.CrossRef Khedr, A. M., & Osamy, W. (2011). Effective target tracking mechanism in a self-organizing wireless sensor network. Journal of Parallel and Distributed Computing, 71(10), 1318–1326.CrossRef
32.
Zurück zum Zitat Khedr, A. M. (2008). A new mechanism for tracking a mobile target using grid sensor networks. Computing and Informatics, 28, 1001–1021. Khedr, A. M. (2008). A new mechanism for tracking a mobile target using grid sensor networks. Computing and Informatics, 28, 1001–1021.
33.
Zurück zum Zitat Sarkar, R., & Gao, J. (2013). Differential forms for target tracking and aggregate queries in distributed networks. IEEE/ACM Transactions on Networking, 21(4), 11591172.CrossRef Sarkar, R., & Gao, J. (2013). Differential forms for target tracking and aggregate queries in distributed networks. IEEE/ACM Transactions on Networking, 21(4), 11591172.CrossRef
34.
Zurück zum Zitat Zhu, H., Li, M., Zhu, Y., & Lionel, M. N. (2009). HERO: Online realtime vehicle tracking. IEEE Transactions on Parallel and Distributed Systems, 20(5), 740–752.CrossRef Zhu, H., Li, M., Zhu, Y., & Lionel, M. N. (2009). HERO: Online realtime vehicle tracking. IEEE Transactions on Parallel and Distributed Systems, 20(5), 740–752.CrossRef
35.
Zurück zum Zitat Chen, P., Zhong, Z., & He, T. (2011). Bubble trace: Mobile target tracking under insufficient anchor coverage. In Proceedings of IEEE ICDCS (pp. 770–779). Chen, P., Zhong, Z., & He, T. (2011). Bubble trace: Mobile target tracking under insufficient anchor coverage. In Proceedings of IEEE ICDCS (pp. 770–779).
36.
Zurück zum Zitat Misra, S., & Singh, S. (2012). Localized policy-based target tracking using wireless sensor networks. ACM Transactions on Sensor Networks, 8(3), 1–30.CrossRef Misra, S., & Singh, S. (2012). Localized policy-based target tracking using wireless sensor networks. ACM Transactions on Sensor Networks, 8(3), 1–30.CrossRef
37.
Zurück zum Zitat Wang, X., Fu, M., & Zhang, H. (2012). Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements. IEEE Transactions on Mobile Computing, 11(4), 567–576.CrossRef Wang, X., Fu, M., & Zhang, H. (2012). Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements. IEEE Transactions on Mobile Computing, 11(4), 567–576.CrossRef
38.
Zurück zum Zitat Demigha, O., Hidouci, W., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys & Tutorials, 15(3), 1210–1222.CrossRef Demigha, O., Hidouci, W., & Ahmed, T. (2013). On energy efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys & Tutorials, 15(3), 1210–1222.CrossRef
39.
Zurück zum Zitat Chen, T.-S., Chen, J.-J., & Wu, C.-H. (2016). Distributed object tracking using moving trajectories in wireless sensor networks. Wireless Networks, 22(7), 2415–2437.CrossRef Chen, T.-S., Chen, J.-J., & Wu, C.-H. (2016). Distributed object tracking using moving trajectories in wireless sensor networks. Wireless Networks, 22(7), 2415–2437.CrossRef
40.
Zurück zum Zitat Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2013). Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Transactions on Vehicular Technology, 62(1), 256–271.CrossRef Abbasi, A. A., Younis, M. F., & Baroudi, U. A. (2013). Recovering from a node failure in wireless sensor-actor networks with minimal topology changes. IEEE Transactions on Vehicular Technology, 62(1), 256–271.CrossRef
41.
Zurück zum Zitat Chouikhi, S., Korbi, I. E., Ghamri-Doudane, Y., & Saidane, L. A. (2014). Fault tolerant multi-channel allocation scheme for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 2438–2443). Chouikhi, S., Korbi, I. E., Ghamri-Doudane, Y., & Saidane, L. A. (2014). Fault tolerant multi-channel allocation scheme for wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 2438–2443).
42.
Zurück zum Zitat Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef Elhabyan, R., Shi, W., & St-Hilaire, M. (2019). Coverage protocols for wireless sensor networks: Review and future directions. Journal of Communications and Networks, 21(1), 45–60.CrossRef
43.
Zurück zum Zitat Hwang, R.-H., Wang, C.-C., & Wang, W.-B. (2017). A distributed scheduling algorithm for ieee 802.15.4e wireless sensor networks. Computer Standards & Interfaces, 52, 63–70.CrossRef Hwang, R.-H., Wang, C.-C., & Wang, W.-B. (2017). A distributed scheduling algorithm for ieee 802.15.4e wireless sensor networks. Computer Standards & Interfaces, 52, 63–70.CrossRef
44.
Zurück zum Zitat Wang, B. (2011). Coverage problems in sensor networks. ACM Computing Surveys, 43(4), 1–53.CrossRef Wang, B. (2011). Coverage problems in sensor networks. ACM Computing Surveys, 43(4), 1–53.CrossRef
45.
Zurück zum Zitat Beghdad, R., & Lamraoui, A. (2016). Boundary and holes recognition in wireless sensor networks. Journal of Innovation in Digital Ecosystems, 3(1), 1–14.CrossRef Beghdad, R., & Lamraoui, A. (2016). Boundary and holes recognition in wireless sensor networks. Journal of Innovation in Digital Ecosystems, 3(1), 1–14.CrossRef
46.
Zurück zum Zitat Khedr, A. M., & Osamy, W. (2011). Minimum perimeter coverage of query regions in a heterogeneous wireless sensor network. Information Sciences, 181, 3130–3142.CrossRef Khedr, A. M., & Osamy, W. (2011). Minimum perimeter coverage of query regions in a heterogeneous wireless sensor network. Information Sciences, 181, 3130–3142.CrossRef
47.
Zurück zum Zitat Xu, Y., & Zeng, Z. (2015). A low redundancy and high coverage node scheduling algorithm for wireless sensor networks. In Communications in computer and information science advances in wireless sensor networks (pp. 42–51). Xu, Y., & Zeng, Z. (2015). A low redundancy and high coverage node scheduling algorithm for wireless sensor networks. In Communications in computer and information science advances in wireless sensor networks (pp. 42–51).
48.
Zurück zum Zitat Cheng, W., Li, Y., Jiang, Y., & Yin, X. (2016). Regular deployment of wireless sensors to achieve connectivity and information coverage. Sensors, 16(8), 1270.CrossRef Cheng, W., Li, Y., Jiang, Y., & Yin, X. (2016). Regular deployment of wireless sensors to achieve connectivity and information coverage. Sensors, 16(8), 1270.CrossRef
49.
Zurück zum Zitat Qiu, C., & Shen, H. (2014). A delaunay-based coordinate-free mechanism for full coverage in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 828–839.CrossRef Qiu, C., & Shen, H. (2014). A delaunay-based coordinate-free mechanism for full coverage in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 25(4), 828–839.CrossRef
50.
Zurück zum Zitat Hajihoseini Gazestani, A., Shahbazian, R., & Ghorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97(3), 3587–3599.CrossRef Hajihoseini Gazestani, A., Shahbazian, R., & Ghorashi, S. A. (2017). Decentralized consensus based target localization in wireless sensor networks. Wireless Personal Communications, 97(3), 3587–3599.CrossRef
51.
Zurück zum Zitat Hajihoseini, A., & Ghorashi, S. A. (2016). Distributed target localization in wireless sensor networks using diffusion adaptation. Indonesian Journal of Electrical Engineering and Computer Science, 3(3), 512.CrossRef Hajihoseini, A., & Ghorashi, S. A. (2016). Distributed target localization in wireless sensor networks using diffusion adaptation. Indonesian Journal of Electrical Engineering and Computer Science, 3(3), 512.CrossRef
52.
Zurück zum Zitat Hormann, K., & Agathos, A. (2001). The point in polygon problem for arbitrary polygons. Computational Geometry, 20(3), 131–144.MathSciNetMATHCrossRef Hormann, K., & Agathos, A. (2001). The point in polygon problem for arbitrary polygons. Computational Geometry, 20(3), 131–144.MathSciNetMATHCrossRef
54.
Zurück zum Zitat Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.CrossRef Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.CrossRef
55.
Zurück zum Zitat Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In First international conference on wireless internet (WICON05). Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2005). Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks. In First international conference on wireless internet (WICON05).
Metadaten
Titel
Coverage aware face topology structure for wireless sensor network applications
verfasst von
Ahmed M. Khedr
Zaher Al Aghbari
P V Pravija Raj
Publikationsdatum
14.05.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02347-7

Weitere Artikel der Ausgabe 6/2020

Wireless Networks 6/2020 Zur Ausgabe

Neuer Inhalt