Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 8/2012

01.08.2012 | Symposium: Bulk Metallic Glasses VIII

Interface Constraints on Shear Band Patterns in Bonded Metallic Glass Films Under Microindentation

verfasst von: Z. N. An, W. D. Li, F. X. Liu, P. K. Liaw, Y. F. Gao

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 8/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

When using the bonded interface technique for indentation tests, the semicircular and radial shear bands can be observed on the top surfaces and bonded interfaces in bulk metallic glasses (BMGs). In addition to the stress relaxation effects at the bonded interface, indentation tests on bonded BMG films on the steel platen further demonstrate the effects of the film/substrate interface on shear band patterns. The understanding of these shear band patterns will help design internal constraints to confine shear bands and thus to prevent brittle failure of BMGs. In contrast to previous studies, which connect shear band directions to principal shear stress or effective stress, as in the Mohr–Coulomb model, this article adopts the Rudnick–Rice instability theory—shear bands are a result of loss of material stability but are not a yield phenomenon. Shear band directions depend on material constitutive parameters (including Poisson’s ratio, coefficient of internal friction, and dilatancy factor) and principal stresses. Consequently, internal constraints such as the bonded interface and film/substrate interface may redistribute the stress fields and thus affect the shear band propagation directions. Finite element simulations were performed to determine the contact stress fields using continuum plasticity model. It is found that semicircular shear bands on the bonded interface follow the direction of the second principal stress, while radial shear band patterns depend on the two in-plane principal stresses. With the presence of film/substrate interfaces, the radial shear bands will be “reflected” at the interface, and the semicircular shear bands change directions and end at the interface. It should be noted that the actual stress field differs from the continuum plasticity simulations because of the strain localizations associated with shear bands. To this end, an explicit history of shear band nucleation and propagation is simulated by the free volume model, which reproduces the change from radial to semicircular shear bands when interface relaxation is introduced. These predictions agree well with our experimental observations of microindentation tests on two Zr-based BMG films laterally bonded and placed on a steel platen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56. W.L. Johnson: MRS Bull., 1999, vol. 24, pp. 42–56.
3.
Zurück zum Zitat C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.CrossRef C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.CrossRef
4.
Zurück zum Zitat W.J. Wright, R. Saha, and W.D. Nix: Mater. Trans., 2001, vol. 42, pp. 642–49.CrossRef W.J. Wright, R. Saha, and W.D. Nix: Mater. Trans., 2001, vol. 42, pp. 642–49.CrossRef
5.
Zurück zum Zitat C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.CrossRef C.C. Hays, C.P. Kim, and W.L. Johnson: Phys. Rev. Lett., 2000, vol. 84, pp. 2901–04.CrossRef
6.
Zurück zum Zitat R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel: Acta Mater., 2005, vol. 53, pp. 1883–93.CrossRef R.T. Ott, F. Sansoz, J.F. Molinari, J. Almer, K.T. Ramesh, and T.C. Hufnagel: Acta Mater., 2005, vol. 53, pp. 1883–93.CrossRef
7.
Zurück zum Zitat F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw: Surf. Coat. Technol., 2009, vol. 203, pp. 3480–84.CrossRef F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, and P.K. Liaw: Surf. Coat. Technol., 2009, vol. 203, pp. 3480–84.CrossRef
8.
Zurück zum Zitat F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, and P.D. Rack: Mater. Sci. Eng. A, 2007, vols. 468–470, pp. 246–52. F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, and P.D. Rack: Mater. Sci. Eng. A, 2007, vols. 468–470, pp. 246–52.
9.
Zurück zum Zitat F.X. Liu, Y.F. Gao, and P.K. Liaw: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1862–67.CrossRef F.X. Liu, Y.F. Gao, and P.K. Liaw: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1862–67.CrossRef
11.
Zurück zum Zitat R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Acta Mater., 2001, vol. 49, pp. 3781–89.CrossRef R. Vaidyanathan, M. Dao, G. Ravichandran, and S. Suresh: Acta Mater., 2001, vol. 49, pp. 3781–89.CrossRef
12.
Zurück zum Zitat Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.CrossRef Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.CrossRef
13.
Zurück zum Zitat L. Anand and C. Su: J. Mech. Phys. Solids, 2005, vol. 53, pp. 1362–96.CrossRef L. Anand and C. Su: J. Mech. Phys. Solids, 2005, vol. 53, pp. 1362–96.CrossRef
14.
Zurück zum Zitat V. Keryvin: J. Phys., Condens Matter., 2008, vol. 20, Article no. 114119. V. Keryvin: J. Phys., Condens Matter., 2008, vol. 20, Article no. 114119.
15.
Zurück zum Zitat B.G. Yoo and J.I. Jang: J. Phys. D: Appl. Phys., 2008, vol. 41, Article no. 074017. B.G. Yoo and J.I. Jang: J. Phys. D: Appl. Phys., 2008, vol. 41, Article no. 074017.
16.
Zurück zum Zitat L. Wang, H. Bei, Y.F. Gao, Z.P. Lu, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 2858–64.CrossRef L. Wang, H. Bei, Y.F. Gao, Z.P. Lu, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 2858–64.CrossRef
17.
Zurück zum Zitat M. Zhao and M. Li: Appl. Phys. Lett., 2008, vol. 93, Article no. 241906. M. Zhao and M. Li: Appl. Phys. Lett., 2008, vol. 93, Article no. 241906.
18.
19.
Zurück zum Zitat Y.F. Gao, L. Wang, H. Bei, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 4159–67.CrossRef Y.F. Gao, L. Wang, H. Bei, and T.G. Nieh: Acta Mater., 2011, vol. 59, pp. 4159–67.CrossRef
20.
Zurück zum Zitat J.W. Rudnicki and J.R. Rice: J. Mech. Phys. Solids, 1975, vol. 23, pp. 371–94.CrossRef J.W. Rudnicki and J.R. Rice: J. Mech. Phys. Solids, 1975, vol. 23, pp. 371–94.CrossRef
21.
Zurück zum Zitat L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, Article no. 180201. L.Q. Xing, Y. Li, K.T. Ramesh, J. Li, and T.C. Hufnagel: Phys. Rev. B, 2001, vol. 64, Article no. 180201.
22.
Zurück zum Zitat S. Jana, U. Ramamurty, K. Chattopadhyay, and Y. Kawamura: Mater. Sci. Eng. A, 2004, vol. 375, pp. 1191–95.CrossRef S. Jana, U. Ramamurty, K. Chattopadhyay, and Y. Kawamura: Mater. Sci. Eng. A, 2004, vol. 375, pp. 1191–95.CrossRef
23.
Zurück zum Zitat U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Acta Mater., 2005, vol. 53, pp. 705–17.CrossRef U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Acta Mater., 2005, vol. 53, pp. 705–17.CrossRef
24.
Zurück zum Zitat H.W. Zhang, X.N. Jing, G. Subhash, L.J. Kecskes, and R.J. Dowding: Acta Mater., 2005, vol. 53, pp. 3849–59.CrossRef H.W. Zhang, X.N. Jing, G. Subhash, L.J. Kecskes, and R.J. Dowding: Acta Mater., 2005, vol. 53, pp. 3849–59.CrossRef
25.
26.
Zurück zum Zitat C.E. Pachard and C.A. Schuh: Acta Mater., 2007, vol. 55, pp. 5348–58.CrossRef C.E. Pachard and C.A. Schuh: Acta Mater., 2007, vol. 55, pp. 5348–58.CrossRef
27.
Zurück zum Zitat C.G. Tang, Y. Li, and K.Y. Zeng: Mater. Sci. Eng. A, 2004, vol. 384, pp. 215–23.CrossRef C.G. Tang, Y. Li, and K.Y. Zeng: Mater. Sci. Eng. A, 2004, vol. 384, pp. 215–23.CrossRef
28.
Zurück zum Zitat G.S. Yu, J.G. Lin, and W. Li: Philos. Mag. Lett., 2010, vol. 90, pp. 393–401.CrossRef G.S. Yu, J.G. Lin, and W. Li: Philos. Mag. Lett., 2010, vol. 90, pp. 393–401.CrossRef
29.
Zurück zum Zitat G.R. Trichy, R.O. Scattergood, C.C. Koch, and K.L. Murty: Scripta Mater., 2005, vol. 53, pp. 1461–65.CrossRef G.R. Trichy, R.O. Scattergood, C.C. Koch, and K.L. Murty: Scripta Mater., 2005, vol. 53, pp. 1461–65.CrossRef
30.
Zurück zum Zitat V. Keryvin, K.E. Prasad, Y. Gueguen, J.C. Sangleboeuf, and U. Ramamurty: Phil. Mag., 2008, vol. 88, pp. 1773–90.CrossRef V. Keryvin, K.E. Prasad, Y. Gueguen, J.C. Sangleboeuf, and U. Ramamurty: Phil. Mag., 2008, vol. 88, pp. 1773–90.CrossRef
33.
Zurück zum Zitat Y.F. Gao: Modelling Simul. Mater. Sci. Eng., 2006, vol. 14, pp. 1329–45.CrossRef Y.F. Gao: Modelling Simul. Mater. Sci. Eng., 2006, vol. 14, pp. 1329–45.CrossRef
34.
Zurück zum Zitat Y.F. Gao, B. Yang, and T.G. Nieh: Acta Mater., 2007, vol. 55, pp. 2319–27.CrossRef Y.F. Gao, B. Yang, and T.G. Nieh: Acta Mater., 2007, vol. 55, pp. 2319–27.CrossRef
35.
Zurück zum Zitat M.Q. Jiang and L.H. Dai: J. Mech. Phys. Solids, 2009, vol. 57, pp. 1267–92.CrossRef M.Q. Jiang and L.H. Dai: J. Mech. Phys. Solids, 2009, vol. 57, pp. 1267–92.CrossRef
Metadaten
Titel
Interface Constraints on Shear Band Patterns in Bonded Metallic Glass Films Under Microindentation
verfasst von
Z. N. An
W. D. Li
F. X. Liu
P. K. Liaw
Y. F. Gao
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 8/2012
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-011-0992-5

Weitere Artikel der Ausgabe 8/2012

Metallurgical and Materials Transactions A 8/2012 Zur Ausgabe

Symposium: Physical and Mechanical Metallurgy of Shape Memory Alloys for Actuator Applications

Foreword: Physical and Mechanical Metallurgy of Shape Memory Alloys for Actuator Applications

Symposium: Fatigue & Corrosion Damage in Metallic Materials

Corrosion-Fatigue Behavior of Aluminum Alloy 5083-H131 Sensitized at 448 K (175 °C)

Symposium: Bulk Metallic Glasses VIII

Partial Coordination Numbers in Binary Metallic Glasses

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.