Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 5/2014

01.05.2014

Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel

verfasst von: Anish Karmakar, S. Sivaprasad, S. K. Nath, R. D. K. Misra, Debalay Chakrabarti

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 5/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A comparative study was carried out on the development of ultrafine-grained dual-phase (DP) (ferrite–martensite) structures in a low-carbon microalloyed steel processed using two thermomechanical processing routes, (i) intercritical deformation and (ii) warm-deformation and intercritical annealing. The samples were deformed using Gleeble3500® simulator, maintaining a constant total strain (ε = 1) and strain rate (\( \dot \varepsilon \) = 1/s). Evolution of microstructure and micro-texture was investigated by SEM, TEM, and EBSD. Ultrafine-grained DP structures could be formed by careful selection of deformation temperature, T def (for intercritical deformation) or annealing temperature, T anneal (for warm-deformation and annealing). Overall, the ferrite grain sizes ranged from 1.5 to 4.0 μm, and the sizes and fractions of the uniformly distributed fine-martensitic islands ranged from 1.5 to 3.0 μm and 15 to 45 pct, respectively. Dynamic strain-induced austenite-to-ferrite transformation followed by continuous (dynamic) recrystallization of the ferrite dictated the grain refinement during intercritical deformation, while, continuous (static) recrystallization by pronounced recovery dictated the grain refinement during the warm-deformation and the annealing. Regarding intercritical deformation, the samples cooled to T def indicated finer grain size compared with the samples heated to T def, which are explained in terms of the effects of strain partitioning on the ferrite and the heating during deformation. Alpha-fiber components dominated the texture in all the samples, and the fraction of high-angle boundaries (with >15 deg misorientation) increased with the increasing T def or T anneal, depending on the processing schedule. Fine carbide particles, microalloyed precipitates and austenitic islands played important roles in defining the mechanism of grain refinement that involved retarding conventional ferrite recrystallization and ferrite grain growth. With regard to the intercritical deformation, warm-deformation followed by annealing is a simpler process to control in the rolling mill; however, the need for high-power rolling mill and controlled annealing facility imposes industrial challenges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.CrossRef R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.CrossRef
2.
Zurück zum Zitat A. Ohmori, S. Torizuka, K. Nagai: ISIJ Int., 2004, vol. 44, pp. 1063–71.CrossRef A. Ohmori, S. Torizuka, K. Nagai: ISIJ Int., 2004, vol. 44, pp. 1063–71.CrossRef
3.
Zurück zum Zitat Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.
4.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe: Scripta Mater., 2005, vol. 52, pp. 1075–80.CrossRef R. Song, D. Ponge, D. Raabe: Scripta Mater., 2005, vol. 52, pp. 1075–80.CrossRef
5.
Zurück zum Zitat N.J. Kim and G. Thomas: Metall. Trans. A, 1981, vol. 12A, pp. 483–89. N.J. Kim and G. Thomas: Metall. Trans. A, 1981, vol. 12A, pp. 483–89.
6.
Zurück zum Zitat M. Calcagnotto, D. Ponge, D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–40.CrossRef M. Calcagnotto, D. Ponge, D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–40.CrossRef
7.
Zurück zum Zitat M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.CrossRef M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.CrossRef
8.
Zurück zum Zitat M. Mazinani, W. J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.CrossRef M. Mazinani, W. J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.CrossRef
9.
Zurück zum Zitat P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari, N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRef P. Movahed, S. Kolahgar, S. P. H. Marashi, M. Pouranvari, N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRef
10.
Zurück zum Zitat H. Azizi-Alizamini, M. Militzer, W. J. Poole: ISIJ Int., 2011, vol. 51, pp. 958–64.CrossRef H. Azizi-Alizamini, M. Militzer, W. J. Poole: ISIJ Int., 2011, vol. 51, pp. 958–64.CrossRef
11.
Zurück zum Zitat S. C. Hong, K. S. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 148–59.CrossRef S. C. Hong, K. S. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 148–59.CrossRef
12.
Zurück zum Zitat K. T. Park, Y. K. Lee, D. H. Shin: ISIJ Int., 2005, vol. 45, pp. 750–55.CrossRef K. T. Park, Y. K. Lee, D. H. Shin: ISIJ Int., 2005, vol. 45, pp. 750–55.CrossRef
13.
Zurück zum Zitat K. Mukherjee, S. S. Hazra, M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2145–49.CrossRef K. Mukherjee, S. S. Hazra, M. Militzer: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2145–49.CrossRef
14.
Zurück zum Zitat M. Calcagnotto, D. Ponge and D. Raabe: ISIJ Int., 2008, vol. 48, pp. 1096–1101.CrossRef M. Calcagnotto, D. Ponge and D. Raabe: ISIJ Int., 2008, vol. 48, pp. 1096–1101.CrossRef
15.
16.
17.
Zurück zum Zitat M. Mazinani, W. J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.CrossRef M. Mazinani, W. J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.CrossRef
18.
Zurück zum Zitat H. Mabuchi, T. Hasegawa, T. Ishikawa: ISIJ Int., 1999, vol. 39, pp. 477–85.CrossRef H. Mabuchi, T. Hasegawa, T. Ishikawa: ISIJ Int., 1999, vol. 39, pp. 477–85.CrossRef
19.
Zurück zum Zitat R. R. Mohanty, A. O. Girina, N. M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3680–90.CrossRef R. R. Mohanty, A. O. Girina, N. M. Fonstein: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3680–90.CrossRef
20.
Zurück zum Zitat F. Le Pera. J. Met, 1980, vol. 32, pp. 38–39. F. Le Pera. J. Met, 1980, vol. 32, pp. 38–39.
21.
Zurück zum Zitat S. Patra, S. Roy, V. Kumar, A. Haldar, and D. Chakrabarti: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2575–90.CrossRef S. Patra, S. Roy, V. Kumar, A. Haldar, and D. Chakrabarti: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2575–90.CrossRef
22.
Zurück zum Zitat H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 450–63.CrossRef H. Beladi, G.L. Kelly, and P.D. Hodgson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 450–63.CrossRef
23.
Zurück zum Zitat A. Shokouhi and P. D. Hodgson: Mater. Sci. Technol., 2007, vol. 23, pp. 1233–42.CrossRef A. Shokouhi and P. D. Hodgson: Mater. Sci. Technol., 2007, vol. 23, pp. 1233–42.CrossRef
24.
Zurück zum Zitat P. D. Hodgson, A. Shokouhi, and H. Beladi: ISIJ Int., 2008, vol. 48, pp. 1046–49.CrossRef P. D. Hodgson, A. Shokouhi, and H. Beladi: ISIJ Int., 2008, vol. 48, pp. 1046–49.CrossRef
25.
Zurück zum Zitat A. Karmakar, R.D.K. Misra, S. Neogy, D. Chakrabarti: Metall. Mater. Trans. A, 2013, vol. 44A, 4106–18.CrossRef A. Karmakar, R.D.K. Misra, S. Neogy, D. Chakrabarti: Metall. Mater. Trans. A, 2013, vol. 44A, 4106–18.CrossRef
26.
27.
Zurück zum Zitat H. Luo, J. Sietsma, and S. Van Der Zwaag: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2789–97.CrossRef H. Luo, J. Sietsma, and S. Van Der Zwaag: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2789–97.CrossRef
28.
Zurück zum Zitat E. A. Simielli, S. Yue, and J. J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 597–608.CrossRef E. A. Simielli, S. Yue, and J. J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 597–608.CrossRef
29.
Zurück zum Zitat G. Glover and C. M. Sellars: Metall. Trans. A, 1973, vol. 4A, pp. 765–75.CrossRef G. Glover and C. M. Sellars: Metall. Trans. A, 1973, vol. 4A, pp. 765–75.CrossRef
30.
Zurück zum Zitat A. Najafi-Zadeh, J. J. Jonas, S. Yue: Metall. Trans. A, 1992, vol. 23A, pp. 2607–18.CrossRef A. Najafi-Zadeh, J. J. Jonas, S. Yue: Metall. Trans. A, 1992, vol. 23A, pp. 2607–18.CrossRef
31.
32.
Zurück zum Zitat S. V. S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo (2007) Mater. Sci. Eng. A 457:162–68.CrossRef S. V. S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo (2007) Mater. Sci. Eng. A 457:162–68.CrossRef
33.
Zurück zum Zitat L. Storojeva, D. Ponge, R. Kaspar, D. Raabe: Acta Mater., 2004, vol. 52, pp. 2209–20.CrossRef L. Storojeva, D. Ponge, R. Kaspar, D. Raabe: Acta Mater., 2004, vol. 52, pp. 2209–20.CrossRef
34.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.CrossRef R. Song, D. Ponge, D. Raabe, and R. Kaspar: Acta Mater., 2005, vol. 53, pp. 845–58.CrossRef
35.
Zurück zum Zitat M. Sánchez-Araiza, S. Godet, J. J. Jonas: Materials Science Forum, 2005, vols. 495–497, pp. 501–06.CrossRef M. Sánchez-Araiza, S. Godet, J. J. Jonas: Materials Science Forum, 2005, vols. 495–497, pp. 501–06.CrossRef
36.
Zurück zum Zitat T. Ogawa, N. Muruyama, N. Sugiura, Y. Yoshinaga: ISIJ Int., 2010, vol. 50, pp. 469–75.CrossRef T. Ogawa, N. Muruyama, N. Sugiura, Y. Yoshinaga: ISIJ Int., 2010, vol. 50, pp. 469–75.CrossRef
37.
Zurück zum Zitat J. H. Park, T. Tomota, M. Y. Wey: Mater. Sci. Technol., 2002, vol. 18, 1517–23.CrossRef J. H. Park, T. Tomota, M. Y. Wey: Mater. Sci. Technol., 2002, vol. 18, 1517–23.CrossRef
Metadaten
Titel
Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel
verfasst von
Anish Karmakar
S. Sivaprasad
S. K. Nath
R. D. K. Misra
Debalay Chakrabarti
Publikationsdatum
01.05.2014
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 5/2014
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-014-2184-6

Weitere Artikel der Ausgabe 5/2014

Metallurgical and Materials Transactions A 5/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.