Skip to main content
Erschienen in: Metallurgical and Materials Transactions B 3/2023

24.02.2023 | Original Research Article

Influence Mechanism of Crucible Materials on Cleanliness and Inclusion Characteristics of High-Nitrogen Stainless Bearing Steel During Vacuum Carbon Deoxidation

verfasst von: Hua-Bing Li, Peng-Chong Lu, Hao Feng, Peng-Fei Zhang, Shu-Cai Zhang, Zhou-Hua Jiang

Erschienen in: Metallurgical and Materials Transactions B | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High cleanliness is an important guarantee for the long-service of bearing steel. In this study, the effect of crucible materials on cleanliness and inclusion characteristics of high-nitrogen stainless bearing steel (HNSBS) during vacuum carbon deoxidation was comprehensively investigated by microstructure characterization and thermodynamic analysis. The results showed that the ultimate O contents using MgO·Al2O3, MgO, and ZrO2 (MA, M, and Z) crucibles could be decreased from about 0.0060 to 0.0028, 0.0012, and 0.0022 wt pct, respectively. The ranking of crucible thermodynamic stability during vacuum carbon deoxidation was M < MA < Z, representing the decreasing of oxygen transfer rate due to crucible decomposition. The deoxidation rate of carbon–oxygen reaction increased with the decreasing of CO partial pressure, and the ranking of deoxidation rate using various crucibles was Z < MA < M. Meanwhile, the main oxide inclusions in steel using MA, M, and Z crucibles transformed from Al2O3 to MgO·Al2O3, MgO, and ZrO2, respectively. The area and average size of inclusions in steel using M crucible were smaller than the others owing to the decreasing of large-size Al2O3 inclusions and the increasing of percentage of low-density Mg-containing inclusions, while the existence of high-density ZrO2 inclusions in steel using Z crucible restricted the floating and removal of inclusions. Therefore, MgO crucible was more appropriate to melt high-cleanliness HNSBS with lower O content and fewer deleterious inclusions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.F. Xu, G.L. Wu, C. Wang, J. Li, and W.Q. Cao: J. Iron Steel Res. Int., 2018, vol. 25, pp. 954–67.CrossRef H.F. Xu, G.L. Wu, C. Wang, J. Li, and W.Q. Cao: J. Iron Steel Res. Int., 2018, vol. 25, pp. 954–67.CrossRef
2.
Zurück zum Zitat N.B. Dhokey, A. Upadhye, N. Shah, and K.T. Tharian: Mater. Today: Proc., 2021, vol. 43, pp. 3023–29. N.B. Dhokey, A. Upadhye, N. Shah, and K.T. Tharian: Mater. Today: Proc., 2021, vol. 43, pp. 3023–29.
3.
Zurück zum Zitat H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.CrossRef H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.CrossRef
4.
Zurück zum Zitat Y.X. Qiao, Y.G. Zheng, P.C. Okafor, and W. Ke: Electrochim. Acta, 2009, vol. 54, pp. 2298–2304.CrossRef Y.X. Qiao, Y.G. Zheng, P.C. Okafor, and W. Ke: Electrochim. Acta, 2009, vol. 54, pp. 2298–2304.CrossRef
5.
Zurück zum Zitat H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, p. 108081.CrossRef H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, p. 108081.CrossRef
6.
Zurück zum Zitat P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2210–23.CrossRef P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2210–23.CrossRef
7.
Zurück zum Zitat L. Cao, L.G. Zhu, and Z.H. Guo: J. Iron Steel Res. Int., 2022, vol. 30, pp.1–20.CrossRef L. Cao, L.G. Zhu, and Z.H. Guo: J. Iron Steel Res. Int., 2022, vol. 30, pp.1–20.CrossRef
8.
Zurück zum Zitat K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 1605–11.CrossRef K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 1605–11.CrossRef
9.
Zurück zum Zitat Z.X. Cao, Z.Y. Shi, F. Yu, G.L. Wu, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue, 2019, vol. 126, pp. 1–5.CrossRef Z.X. Cao, Z.Y. Shi, F. Yu, G.L. Wu, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue, 2019, vol. 126, pp. 1–5.CrossRef
10.
Zurück zum Zitat C.Y. Yang, Y.K. Luan, D.Z. Li, and Y.Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298–1308.CrossRef C.Y. Yang, Y.K. Luan, D.Z. Li, and Y.Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298–1308.CrossRef
11.
Zurück zum Zitat G.X. Qiu, D.P. Zhan, L. Cao, and H.S. Zhang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1168–79.CrossRef G.X. Qiu, D.P. Zhan, L. Cao, and H.S. Zhang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1168–79.CrossRef
12.
Zurück zum Zitat A.L.V.D. Costa e Silva: J. Mater. Res. Technol., 2019, vol. 8, pp. 2408–22.CrossRef A.L.V.D. Costa e Silva: J. Mater. Res. Technol., 2019, vol. 8, pp. 2408–22.CrossRef
13.
Zurück zum Zitat H. Feng, H.B. Li, Z.Z. Liu, Z.H. Jiang, P.C. Lu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3777–87.CrossRef H. Feng, H.B. Li, Z.Z. Liu, Z.H. Jiang, P.C. Lu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3777–87.CrossRef
14.
Zurück zum Zitat P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, and Y.B. Dai: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1920–35.CrossRef P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, and Y.B. Dai: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1920–35.CrossRef
15.
Zurück zum Zitat P.V. Sklyuev, V.S. Gulyakov, O.A. Polzunov, and V.E. Sokolov: Met. Sci. Heat Treat., 1982, vol. 24, pp. 774–77.CrossRef P.V. Sklyuev, V.S. Gulyakov, O.A. Polzunov, and V.E. Sokolov: Met. Sci. Heat Treat., 1982, vol. 24, pp. 774–77.CrossRef
16.
Zurück zum Zitat J.L. Guo, L.H. Zhao, Y.P. Bao, S. Gao, and M. Wang: Int. J. Miner. Metall. Mater., 2019, vol. 26, pp. 681–88.CrossRef J.L. Guo, L.H. Zhao, Y.P. Bao, S. Gao, and M. Wang: Int. J. Miner. Metall. Mater., 2019, vol. 26, pp. 681–88.CrossRef
17.
Zurück zum Zitat B.H. Kang, Y.R. Gwak, and K.Y. Kim: Trans. Indian Inst. Met., 2014, vol. 67, pp. 617–22.CrossRef B.H. Kang, Y.R. Gwak, and K.Y. Kim: Trans. Indian Inst. Met., 2014, vol. 67, pp. 617–22.CrossRef
18.
Zurück zum Zitat H. Ling and L. Zhang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2963–68.CrossRef H. Ling and L. Zhang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2963–68.CrossRef
19.
Zurück zum Zitat P.H. Li, Q.J. Wu, W.H. Hu, and J.S. Ye: J. Iron Steel Res. Int., 2015, vol. 22, pp. 63–67.CrossRef P.H. Li, Q.J. Wu, W.H. Hu, and J.S. Ye: J. Iron Steel Res. Int., 2015, vol. 22, pp. 63–67.CrossRef
20.
Zurück zum Zitat Z.L. Xue, Z.B. Li, J.W. Zhang, and Y.L. Gao: J. Iron Steel Res. Int., 2003, vol. 15, pp. 5–8. Z.L. Xue, Z.B. Li, J.W. Zhang, and Y.L. Gao: J. Iron Steel Res. Int., 2003, vol. 15, pp. 5–8.
21.
Zurück zum Zitat J. Feng, Y.P. Bao, X. Wu, and H. Cui: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 541–45.CrossRef J. Feng, Y.P. Bao, X. Wu, and H. Cui: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 541–45.CrossRef
22.
Zurück zum Zitat T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. Iron Steel Inst. Jpn., 1988, vol. 28, p. 305.CrossRef T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. Iron Steel Inst. Jpn., 1988, vol. 28, p. 305.CrossRef
23.
Zurück zum Zitat K. Wang, Y. Wang, J. Xu, W. Xie, T. Chen, and M. Jiang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3370–75.CrossRef K. Wang, Y. Wang, J. Xu, W. Xie, T. Chen, and M. Jiang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3370–75.CrossRef
24.
Zurück zum Zitat Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 1083–99.CrossRef Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 1083–99.CrossRef
25.
Zurück zum Zitat S. Jansson, V. Brabie, and P. Jönsson: Ironmak. Steelmak., 2006, vol. 33, pp. 389–97.CrossRef S. Jansson, V. Brabie, and P. Jönsson: Ironmak. Steelmak., 2006, vol. 33, pp. 389–97.CrossRef
26.
Zurück zum Zitat S. Smets, S. Parada, J. Weytjens, G. Heylen, P.T. Jones, M. Guo, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2003, vol. 30, pp. 293–300.CrossRef S. Smets, S. Parada, J. Weytjens, G. Heylen, P.T. Jones, M. Guo, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2003, vol. 30, pp. 293–300.CrossRef
27.
Zurück zum Zitat F. Simbarashe, L. Mykhaylo, W.D. Moegamat, P. Lydia, L. Vladimir, T. Sun, R. Tang, F. Xiao, F.V. Pavel, and T.P. Boris: Mater. Des., 2020, vol. 186, p. 108295.CrossRef F. Simbarashe, L. Mykhaylo, W.D. Moegamat, P. Lydia, L. Vladimir, T. Sun, R. Tang, F. Xiao, F.V. Pavel, and T.P. Boris: Mater. Des., 2020, vol. 186, p. 108295.CrossRef
28.
Zurück zum Zitat S.A. Kiseleva, M.I. Vinograd, V.G. Kostogonov, and O.S. Tuchkina: Refractories, 1979, vol. 20, pp. 573–75.CrossRef S.A. Kiseleva, M.I. Vinograd, V.G. Kostogonov, and O.S. Tuchkina: Refractories, 1979, vol. 20, pp. 573–75.CrossRef
29.
30.
Zurück zum Zitat Y. Zhao, L. Wang, C. Chen, J. Li, and X. Li: Ceram. Int., 2023, vol. 49, pp. 117–25.CrossRef Y. Zhao, L. Wang, C. Chen, J. Li, and X. Li: Ceram. Int., 2023, vol. 49, pp. 117–25.CrossRef
31.
Zurück zum Zitat A.L.V.D. Costa e Silva: J. Mater. Res. Technol., 2018, vol. 7, pp. 283–99.CrossRef A.L.V.D. Costa e Silva: J. Mater. Res. Technol., 2018, vol. 7, pp. 283–99.CrossRef
32.
Zurück zum Zitat M. Jiang, X.H. Wang, and J.J. Pak: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1248–59.CrossRef M. Jiang, X.H. Wang, and J.J. Pak: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1248–59.CrossRef
33.
Zurück zum Zitat H. Li, Y. Han, H. Feng, G. Zhou, Z. Jiang, M. Cai, Y. Li, and M. Huang: J. Mater. Sci. Technol., 2023, vol. 141, pp. 184–92.CrossRef H. Li, Y. Han, H. Feng, G. Zhou, Z. Jiang, M. Cai, Y. Li, and M. Huang: J. Mater. Sci. Technol., 2023, vol. 141, pp. 184–92.CrossRef
34.
35.
Zurück zum Zitat Q. Ren, L.F. Zhang, Z.Y. Hu, and L. Cheng: Ironmak. Steelmak., 2021, vol. 48, pp. 191–99.CrossRef Q. Ren, L.F. Zhang, Z.Y. Hu, and L. Cheng: Ironmak. Steelmak., 2021, vol. 48, pp. 191–99.CrossRef
36.
Zurück zum Zitat Y. Ren, L. Zhang, W. Yang, and H. Duan: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2057–71.CrossRef Y. Ren, L. Zhang, W. Yang, and H. Duan: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2057–71.CrossRef
37.
Zurück zum Zitat D. Hou, D. Wang, Z. Jiang, T. Qu, and H. Wang: J. Sustain. Metall., 2020, vol. 6, pp. 463–77.CrossRef D. Hou, D. Wang, Z. Jiang, T. Qu, and H. Wang: J. Sustain. Metall., 2020, vol. 6, pp. 463–77.CrossRef
38.
Zurück zum Zitat R.M. Geng, J. Li, and C.B. Shi: ISIJ Int., 2021, vol. 61, pp. 1506–13.CrossRef R.M. Geng, J. Li, and C.B. Shi: ISIJ Int., 2021, vol. 61, pp. 1506–13.CrossRef
39.
Zurück zum Zitat S.B. Lee, D. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337–42.CrossRef S.B. Lee, D. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337–42.CrossRef
40.
Zurück zum Zitat H. Liu, J. Liu, S. Michelic, F. Wei, C. Zhuang, Z. Han, and S. Li: Ironmak. Steelmak., 2015, vol. 43, pp. 1–9. H. Liu, J. Liu, S. Michelic, F. Wei, C. Zhuang, Z. Han, and S. Li: Ironmak. Steelmak., 2015, vol. 43, pp. 1–9.
41.
Zurück zum Zitat C.B. Shi, X.C. Chen, and H.J. Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295–302.CrossRef C.B. Shi, X.C. Chen, and H.J. Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295–302.CrossRef
42.
Zurück zum Zitat W. Gong, Z.H. Jiang, L.X. Zhang, C.Y. Chen, and Y.W. Dong: Mater. Sci. Eng. A, 2020, vol. 791, p. 139410.CrossRef W. Gong, Z.H. Jiang, L.X. Zhang, C.Y. Chen, and Y.W. Dong: Mater. Sci. Eng. A, 2020, vol. 791, p. 139410.CrossRef
43.
Zurück zum Zitat T. Miki: Treatise on Process Metallurgy, Elsevier, Boston, 2014, pp. 557–85.CrossRef T. Miki: Treatise on Process Metallurgy, Elsevier, Boston, 2014, pp. 557–85.CrossRef
44.
Zurück zum Zitat H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 953–56.CrossRef H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 953–56.CrossRef
45.
Zurück zum Zitat H.C. Zhu, H.B. Li, Z.W. Ni, Z.Y. He, Z.H. Jiang, H. Feng, S.C. Zhang, and D.S. Mao: Metall. Mater. Trans. B, 2021, vol. 53B, pp. 50–59. H.C. Zhu, H.B. Li, Z.W. Ni, Z.Y. He, Z.H. Jiang, H. Feng, S.C. Zhang, and D.S. Mao: Metall. Mater. Trans. B, 2021, vol. 53B, pp. 50–59.
46.
Zurück zum Zitat S. Zhang, J. Yu, H. Li, Z. Jiang, Y. Geng, H. Feng, B. Zhang, and H. Zhu: J. Mater. Sci. Technol., 2022, vol. 102, pp. 105–14.CrossRef S. Zhang, J. Yu, H. Li, Z. Jiang, Y. Geng, H. Feng, B. Zhang, and H. Zhu: J. Mater. Sci. Technol., 2022, vol. 102, pp. 105–14.CrossRef
47.
48.
Zurück zum Zitat C. Wang, R. Ma, Y. Zhou, Y. Liu, E.F. Daniel, X. Li, P. Wang, J. Dong, and W. Ke: J. Mater. Sci. Technol., 2021, vol. 93, pp. 232–43.CrossRef C. Wang, R. Ma, Y. Zhou, Y. Liu, E.F. Daniel, X. Li, P. Wang, J. Dong, and W. Ke: J. Mater. Sci. Technol., 2021, vol. 93, pp. 232–43.CrossRef
49.
Zurück zum Zitat H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, and T. Zhang: Corros. Sci., 2022, vol. 204, p. 110396.CrossRef H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, and T. Zhang: Corros. Sci., 2022, vol. 204, p. 110396.CrossRef
50.
Zurück zum Zitat D. Kumar and P.C. Pistorius: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 181–91.CrossRef D. Kumar and P.C. Pistorius: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 181–91.CrossRef
51.
Zurück zum Zitat C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989–98.CrossRef C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989–98.CrossRef
52.
Zurück zum Zitat S. Zhang, H. Li, M. Ran, Z. Jiang, L. Zheng, H. Feng, J. Yu, and Y. Dai: ISIJ Int., 2022, vol. 62, pp. 2207–16.CrossRef S. Zhang, H. Li, M. Ran, Z. Jiang, L. Zheng, H. Feng, J. Yu, and Y. Dai: ISIJ Int., 2022, vol. 62, pp. 2207–16.CrossRef
53.
Zurück zum Zitat S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731–50.CrossRef S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731–50.CrossRef
54.
Zurück zum Zitat K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059–66.CrossRef K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059–66.CrossRef
55.
Zurück zum Zitat W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao: ISIJ Int., 2014, vol. 54, pp. 536–42.CrossRef W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao: ISIJ Int., 2014, vol. 54, pp. 536–42.CrossRef
56.
Zurück zum Zitat A.A.B. Sugden and H.K.D.H. Bhadeshia: Metall. Trans. A, 1988, vol. 19, pp. 669–74.CrossRef A.A.B. Sugden and H.K.D.H. Bhadeshia: Metall. Trans. A, 1988, vol. 19, pp. 669–74.CrossRef
57.
Zurück zum Zitat H.S. Kim, C. Chang, and H. Lee: Scr. Mater., 2005, vol. 53, pp. 1253–58.CrossRef H.S. Kim, C. Chang, and H. Lee: Scr. Mater., 2005, vol. 53, pp. 1253–58.CrossRef
58.
Zurück zum Zitat B.A. Wang, N. Wang, Y.J. Yang, H. Zhong, M.Z. Ma, X.Y. Zhang, and R.P. Liu: Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 1132–40.CrossRef B.A. Wang, N. Wang, Y.J. Yang, H. Zhong, M.Z. Ma, X.Y. Zhang, and R.P. Liu: Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 1132–40.CrossRef
Metadaten
Titel
Influence Mechanism of Crucible Materials on Cleanliness and Inclusion Characteristics of High-Nitrogen Stainless Bearing Steel During Vacuum Carbon Deoxidation
verfasst von
Hua-Bing Li
Peng-Chong Lu
Hao Feng
Peng-Fei Zhang
Shu-Cai Zhang
Zhou-Hua Jiang
Publikationsdatum
24.02.2023
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions B / Ausgabe 3/2023
Print ISSN: 1073-5615
Elektronische ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-023-02743-2

Weitere Artikel der Ausgabe 3/2023

Metallurgical and Materials Transactions B 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.