Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2015

01.06.2015

Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite

verfasst von: O. Carvalho, M. Buciumeanu, D. Soares, F. S. Silva, G. Miranda

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this paper was to evaluate the effect of different dispersion methodologies on mechanical properties of the aluminum-silicon (AlSi) composites reinforced by multi-walled carbon nanotubes (MWCNTs) coated with Ni. Different mixing procedures of MWCNTs with AlSi powder were tested, and AlSi-CNT composites were produced by hot pressing—powder metallurgy technique. The shear tests were performed to get the mechanical properties. Scanning electron microscopy with x-ray energy dispersive spectroscopy analysis and thermal analysis was used to investigate the microstructure of AlSi-CNT composites, interface reactions, and fracture morphology after shear tests. The experimental results proved that an improvement of dispersion of CNTs was achieved by using a combination of different mixing processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Lu and Z. Hu, Mechanical Property Evaluation of Single-Walled Carbon Nanotubes by Finite Element Modeling, Composites B, 2012, 43, p 1902–1913CrossRef X. Lu and Z. Hu, Mechanical Property Evaluation of Single-Walled Carbon Nanotubes by Finite Element Modeling, Composites B, 2012, 43, p 1902–1913CrossRef
2.
Zurück zum Zitat M.D. Ganji, A. Fereidoon, M. Jahanshahi, and M.G. Ahangari, Investigation of the Mechanical Properties of Multi-walled Carbon Nanotubes Using Density Functional Theory Calculations, J. Comput. Theor. Nanos., 2012, 9, p 980–985CrossRef M.D. Ganji, A. Fereidoon, M. Jahanshahi, and M.G. Ahangari, Investigation of the Mechanical Properties of Multi-walled Carbon Nanotubes Using Density Functional Theory Calculations, J. Comput. Theor. Nanos., 2012, 9, p 980–985CrossRef
3.
Zurück zum Zitat M.J. O’Connell, Carbon Nanotubes: Properties and Applications, CRC Press Taylor & Francis Group, Boca Raton, 2006CrossRef M.J. O’Connell, Carbon Nanotubes: Properties and Applications, CRC Press Taylor & Francis Group, Boca Raton, 2006CrossRef
4.
Zurück zum Zitat Y.Y. Huang and E.M. Terentjev, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties, Polymers, 2012, 4, p 275–295 Y.Y. Huang and E.M. Terentjev, Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties, Polymers, 2012, 4, p 275–295
5.
Zurück zum Zitat A. Esawi and K. Morsi, Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder, Composites A, 2007, 38, p 646–650CrossRef A. Esawi and K. Morsi, Dispersion of Carbon Nanotubes (CNTs) in Aluminum Powder, Composites A, 2007, 38, p 646–650CrossRef
6.
Zurück zum Zitat C. Deng, X. Zhang, D. Wang, Q. Lin, and A. Li, Preparation and Characterization of Carbon Nanotubes/Aluminum Matrix Composites, Mater. Lett., 2007, 61, p 1725–1728CrossRef C. Deng, X. Zhang, D. Wang, Q. Lin, and A. Li, Preparation and Characterization of Carbon Nanotubes/Aluminum Matrix Composites, Mater. Lett., 2007, 61, p 1725–1728CrossRef
7.
Zurück zum Zitat R. Perez-Bustamante, C.D. Gomez-Esparz, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jimenez et al., Microstructural and Mechanical Characterization of Al-MWCNT Composites Produced by Mechanical Milling, Mater. Sci. Eng. A, 2009, 502, p 159–163CrossRef R. Perez-Bustamante, C.D. Gomez-Esparz, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jimenez et al., Microstructural and Mechanical Characterization of Al-MWCNT Composites Produced by Mechanical Milling, Mater. Sci. Eng. A, 2009, 502, p 159–163CrossRef
8.
Zurück zum Zitat A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah, Fabrication and Properties of Dispersed Carbon Nanotube-Aluminum Composites, Mater. Sci. Eng. A, 2009, 508, p 167–173CrossRef A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah, Fabrication and Properties of Dispersed Carbon Nanotube-Aluminum Composites, Mater. Sci. Eng. A, 2009, 508, p 167–173CrossRef
9.
Zurück zum Zitat S. El-Eskandarany, Mechanical Alloying: For Fabrication of Advanced Engineering Materials, Elsevier Science, New York, 2013 S. El-Eskandarany, Mechanical Alloying: For Fabrication of Advanced Engineering Materials, Elsevier Science, New York, 2013
10.
Zurück zum Zitat C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites, Mater. Sci. Eng. A, 2007, 444, p 138–145CrossRef C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites, Mater. Sci. Eng. A, 2007, 444, p 138–145CrossRef
11.
Zurück zum Zitat R. Perez-Bustamante, I. Estrada-Guel, W. Antunez-Flores, M. Miki-Yoshida, P.J. Ferreira, and R. Martinez-Sanchez, Novel Al-Matrix Nanocomposites Reinforced with Multi-walled Carbon Nanotubes, J. Alloys Compd., 2008, 450, p 323–326CrossRef R. Perez-Bustamante, I. Estrada-Guel, W. Antunez-Flores, M. Miki-Yoshida, P.J. Ferreira, and R. Martinez-Sanchez, Novel Al-Matrix Nanocomposites Reinforced with Multi-walled Carbon Nanotubes, J. Alloys Compd., 2008, 450, p 323–326CrossRef
13.
Zurück zum Zitat S.R. Bakshi and A. Agarwal, An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites, Carbon, 2011, 49, p 533–544CrossRef S.R. Bakshi and A. Agarwal, An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites, Carbon, 2011, 49, p 533–544CrossRef
14.
Zurück zum Zitat L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Ruehle, Investigation of the Interfacial Reaction Between Multi-walled Carbon Nanotubes and Aluminum, Acta Mater., 2006, 54, p 5367–5375CrossRef L. Ci, Z. Ryu, N.Y. Jin-Phillipp, and M. Ruehle, Investigation of the Interfacial Reaction Between Multi-walled Carbon Nanotubes and Aluminum, Acta Mater., 2006, 54, p 5367–5375CrossRef
15.
Zurück zum Zitat H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47, p 570–577CrossRef H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of Hot Extrusion and Spark Plasma Sintering for Producing Carbon Nanotube Reinforced Aluminum Matrix Composites, Carbon, 2009, 47, p 570–577CrossRef
16.
Zurück zum Zitat T. Laha, S. Kuchibhatla, S. Seal, W. Li, and A. Agarwal, Interfacial Phenomena in Thermally Sprayed Multiwalled Carbon Nanotube Reinforced Aluminum Nanocomposite, Acta Mater., 2007, 55, p 1059–1066CrossRef T. Laha, S. Kuchibhatla, S. Seal, W. Li, and A. Agarwal, Interfacial Phenomena in Thermally Sprayed Multiwalled Carbon Nanotube Reinforced Aluminum Nanocomposite, Acta Mater., 2007, 55, p 1059–1066CrossRef
17.
Zurück zum Zitat T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming, Composites A, 2009, 40, p 589–594CrossRef T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile Properties of Carbon Nanotube Reinforced Aluminum Nanocomposite Fabricated by Plasma Spray Forming, Composites A, 2009, 40, p 589–594CrossRef
18.
Zurück zum Zitat K. Morsi and A. Esawi, Effect of Mechanical Alloying Time and Carbon Nanotube (CNT) Content on the Evolution of Aluminum (Al)-CNT Composite Powders, J. Mater. Sci., 2007, 42, p 4954–4959CrossRef K. Morsi and A. Esawi, Effect of Mechanical Alloying Time and Carbon Nanotube (CNT) Content on the Evolution of Aluminum (Al)-CNT Composite Powders, J. Mater. Sci., 2007, 42, p 4954–4959CrossRef
19.
Zurück zum Zitat K.S. Munir, P. Kingshott, and C. Wen, Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review, Crit. Rev. Solid State Mater. Sci., 2014, doi:10.1080/10408436.2014.929521 K.S. Munir, P. Kingshott, and C. Wen, Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review, Crit. Rev. Solid State Mater. Sci., 2014, doi:10.​1080/​10408436.​2014.​929521
20.
Zurück zum Zitat C.D. Li, X.J. Wang, K. Wu, W.Q. Liu, S.L. Xiang, C. Ding, X.S. Hu, and M.Y. Zheng, Distribution and Integrity of Carbon Nanotubes in Carbon Nanotube/Magnesium Composites, J. Alloys Compd., 2014, 612, p 330–336CrossRef C.D. Li, X.J. Wang, K. Wu, W.Q. Liu, S.L. Xiang, C. Ding, X.S. Hu, and M.Y. Zheng, Distribution and Integrity of Carbon Nanotubes in Carbon Nanotube/Magnesium Composites, J. Alloys Compd., 2014, 612, p 330–336CrossRef
21.
Zurück zum Zitat T. Premkumar, R. Mezzenga, and K.E. Geckeler, Carbon Nanotubes in the Liquid Phase: Addressing the Issue of Dispersion, Small, 2012, 8, p 1299–1313CrossRef T. Premkumar, R. Mezzenga, and K.E. Geckeler, Carbon Nanotubes in the Liquid Phase: Addressing the Issue of Dispersion, Small, 2012, 8, p 1299–1313CrossRef
22.
Zurück zum Zitat J.S. Oh, K.H. Ahn, and J.S. Hong, Dispersion of Entangled Carbon Nanotube by Melt Extrusion, Korea Aust. Rheol. J., 2010, 22, p 89–94 J.S. Oh, K.H. Ahn, and J.S. Hong, Dispersion of Entangled Carbon Nanotube by Melt Extrusion, Korea Aust. Rheol. J., 2010, 22, p 89–94
23.
Zurück zum Zitat W. Salas, N.G. Alba-Baena, and L.E. Murr, Explosive Shock-Wave Consolidation of Aluminum Powder/Carbon Nanotube Aggregate Mixtures: Optical and Electron Metallography, Metall. Mater. Trans. A, 2007, 38, p 2928–2935CrossRef W. Salas, N.G. Alba-Baena, and L.E. Murr, Explosive Shock-Wave Consolidation of Aluminum Powder/Carbon Nanotube Aggregate Mixtures: Optical and Electron Metallography, Metall. Mater. Trans. A, 2007, 38, p 2928–2935CrossRef
24.
Zurück zum Zitat T. Peng and I. Chang, Mechanical Alloying of Multi-walled Carbon Nanotubes Reinforced Aluminum Composite Powder, Powder Technol., 2014, 266, p 7–15CrossRef T. Peng and I. Chang, Mechanical Alloying of Multi-walled Carbon Nanotubes Reinforced Aluminum Composite Powder, Powder Technol., 2014, 266, p 7–15CrossRef
25.
Zurück zum Zitat Z.D. Tao, H.R. Geng, K. Yu, Z.X. Yang, and Y.Z. Wang, Effects of High-Energy Ball Milling on the Morphology and the Field Emission Property of Multi-walled Carbon Nanotubes, Mater. Lett., 2004, 58, p 3410–3413CrossRef Z.D. Tao, H.R. Geng, K. Yu, Z.X. Yang, and Y.Z. Wang, Effects of High-Energy Ball Milling on the Morphology and the Field Emission Property of Multi-walled Carbon Nanotubes, Mater. Lett., 2004, 58, p 3410–3413CrossRef
26.
Zurück zum Zitat Q. Zhang, Carbon Nanotubes and Their Applications, CRC Taylor & Francis Group, Boca Raton, 2012 Q. Zhang, Carbon Nanotubes and Their Applications, CRC Taylor & Francis Group, Boca Raton, 2012
27.
Zurück zum Zitat O. Carvalho, G. Miranda, D. Soares, and F.S. Silva, Carbon Nanotube Dispersion in Aluminum Matrix Composites—Quantification and Influence on Strength, Mech. Adv. Mat. Struct., 2014, doi:10.1080/15376494.2014.929766 O. Carvalho, G. Miranda, D. Soares, and F.S. Silva, Carbon Nanotube Dispersion in Aluminum Matrix Composites—Quantification and Influence on Strength, Mech. Adv. Mat. Struct., 2014, doi:10.​1080/​15376494.​2014.​929766
28.
Zurück zum Zitat S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites—A Review, Int. Mater. Rev., 2010, 55, p 41–64CrossRef S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites—A Review, Int. Mater. Rev., 2010, 55, p 41–64CrossRef
29.
Zurück zum Zitat C.M. Efraín, Carbon Nanotube-Metal Matrix Composites. Encyclopedia of Nanoscience and Nanotechnology, Dekker, Ed., 2nd ed, null, p 611–619, (Boca Raton), Taylor & Francis (2009), p 611–619 C.M. Efraín, Carbon Nanotube-Metal Matrix Composites. Encyclopedia of Nanoscience and Nanotechnology, Dekker, Ed., 2nd ed, null, p 611–619, (Boca Raton), Taylor & Francis (2009), p 611–619
30.
Zurück zum Zitat B. Munkhbayar, M. Nine, J. Jeoun, M. Bat-Erdene, H. Chung, and H. Jeong, Influence of Dry and Wet Ball Milling on Dispersion Characteristics of the Multi-walled Carbon Nanotubes in Aqueous Solution with and Without Surfactant, Powder Technol., 2013, 234, p 132–140CrossRef B. Munkhbayar, M. Nine, J. Jeoun, M. Bat-Erdene, H. Chung, and H. Jeong, Influence of Dry and Wet Ball Milling on Dispersion Characteristics of the Multi-walled Carbon Nanotubes in Aqueous Solution with and Without Surfactant, Powder Technol., 2013, 234, p 132–140CrossRef
31.
Zurück zum Zitat N. Al-Aqeeli, K. Abdullahi, C. Suryanarayana, T. Laoui, and S. Nouari, Structure of Mechanically Milled CNT-Reinforced Al-Alloy Nanocomposites, Mater. Manuf. Process., 2013, 28, p 984–990 N. Al-Aqeeli, K. Abdullahi, C. Suryanarayana, T. Laoui, and S. Nouari, Structure of Mechanically Milled CNT-Reinforced Al-Alloy Nanocomposites, Mater. Manuf. Process., 2013, 28, p 984–990
32.
Zurück zum Zitat Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of Ball-Milling Time on Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites, Composites A, 2012, 43, p 2161–2168CrossRef Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of Ball-Milling Time on Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites, Composites A, 2012, 43, p 2161–2168CrossRef
33.
Zurück zum Zitat Y.B. Li, B.Q. Wei, J. Liang, Q. Yu, and D.H. Wu, Transformation of Carbon Nanotubes to Nanoparticles by Ball Milling Process, Carbon, 1999, 37, p 493–497CrossRef Y.B. Li, B.Q. Wei, J. Liang, Q. Yu, and D.H. Wu, Transformation of Carbon Nanotubes to Nanoparticles by Ball Milling Process, Carbon, 1999, 37, p 493–497CrossRef
34.
Zurück zum Zitat S. Yoshio, J. Tatami, T. Yamakawa, T. Wakihara, and K. Komeya, Dispersion of Carbon Nanotubes in Ethanol by a Bead Milling Process, Carbon, 2011, 49, p 4131–4137CrossRef S. Yoshio, J. Tatami, T. Yamakawa, T. Wakihara, and K. Komeya, Dispersion of Carbon Nanotubes in Ethanol by a Bead Milling Process, Carbon, 2011, 49, p 4131–4137CrossRef
35.
Zurück zum Zitat B. Munkhbayar, M.J. Nine, S. Hwang, J. Kim, and K. Bae, Effect of Grinding Speed Changes On Dispersibility of the Treated Multi-walled Carbon Nanotubes in Aqueous Solution and its Thermal Characteristics, Chem. Eng. Process., 2012, 61, p 36–41CrossRef B. Munkhbayar, M.J. Nine, S. Hwang, J. Kim, and K. Bae, Effect of Grinding Speed Changes On Dispersibility of the Treated Multi-walled Carbon Nanotubes in Aqueous Solution and its Thermal Characteristics, Chem. Eng. Process., 2012, 61, p 36–41CrossRef
36.
Zurück zum Zitat K.S. Park and J.R. Youn, Dispersion and Aspect Ratio of Carbon Nanotubes in Aqueous Suspension and Their Relationship with Electrical Resistivity of Carbon Nanotube Filled Polymer Composites, Carbon, 2012, 50, p 2322–2330CrossRef K.S. Park and J.R. Youn, Dispersion and Aspect Ratio of Carbon Nanotubes in Aqueous Suspension and Their Relationship with Electrical Resistivity of Carbon Nanotube Filled Polymer Composites, Carbon, 2012, 50, p 2322–2330CrossRef
37.
Zurück zum Zitat G. Pagani, M.J. Green, P. Poulin, and M. Pasquali, Competing Mechanisms and Scaling Laws for Carbon Nanotube Scission by Ultrasonication, Proc. Natl. Acad. Sci. USA, 2012, 109, p 11599–11604CrossRef G. Pagani, M.J. Green, P. Poulin, and M. Pasquali, Competing Mechanisms and Scaling Laws for Carbon Nanotube Scission by Ultrasonication, Proc. Natl. Acad. Sci. USA, 2012, 109, p 11599–11604CrossRef
38.
Zurück zum Zitat A. Lucas, C. Zakri, M. Maugey, M. Schoo, Pvd Pasquali, and P. Poulin, Kinetics of Nanotube and Microfiber Scission Under Sonication, J. Phys. Chem. C, 2009, 113, p 20599–20605CrossRef A. Lucas, C. Zakri, M. Maugey, M. Schoo, Pvd Pasquali, and P. Poulin, Kinetics of Nanotube and Microfiber Scission Under Sonication, J. Phys. Chem. C, 2009, 113, p 20599–20605CrossRef
39.
Zurück zum Zitat J.W. Ning, J.J. Zhang, Y.B. Pan, and J.K. Guo, Fabrication and Mechanical Properties of SiO2 Matrix Composites Reinforced by Carbon Nanotube, Mater. Sci. Eng. A, 2003, 357, p 392–396CrossRef J.W. Ning, J.J. Zhang, Y.B. Pan, and J.K. Guo, Fabrication and Mechanical Properties of SiO2 Matrix Composites Reinforced by Carbon Nanotube, Mater. Sci. Eng. A, 2003, 357, p 392–396CrossRef
40.
Zurück zum Zitat B. Safadi, R. Andrews, and E.A. Grulke, Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films, J. Appl. Polym. Sci., 2002, 84, p 660–2669CrossRef B. Safadi, R. Andrews, and E.A. Grulke, Multiwalled Carbon Nanotube Polymer Composites: Synthesis and Characterization of Thin Films, J. Appl. Polym. Sci., 2002, 84, p 660–2669CrossRef
41.
Zurück zum Zitat R.A. Graff, J.P. Swanson, P.W. Barone, S. Baik, D.A. Heller, and M.S. Strano, Achieving Individual-Nanotube Dispersion at High Loading in Single-Walled Carbon Nanotube Composites, Adv. Mater., 2005, 17, p 980–984CrossRef R.A. Graff, J.P. Swanson, P.W. Barone, S. Baik, D.A. Heller, and M.S. Strano, Achieving Individual-Nanotube Dispersion at High Loading in Single-Walled Carbon Nanotube Composites, Adv. Mater., 2005, 17, p 980–984CrossRef
42.
Zurück zum Zitat T.R. Frømyr, F.K. Hansen, and T. Olsen, The Optimum Dispersion of Carbon Nanotubes for Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment, Nanotechnology, 2012, 2012, p 1–14CrossRef T.R. Frømyr, F.K. Hansen, and T. Olsen, The Optimum Dispersion of Carbon Nanotubes for Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment, Nanotechnology, 2012, 2012, p 1–14CrossRef
43.
Zurück zum Zitat A. Ilcham, A. Srisurichan, A. Soottitantawat, and T. Charinpanitkul, Dispersion of Multi-walled Carbon Nanotubes in Poly(p-phenylene) Thin Films and Their Electrical Characteristics, Particuology, 2009, 7, p 403–407CrossRef A. Ilcham, A. Srisurichan, A. Soottitantawat, and T. Charinpanitkul, Dispersion of Multi-walled Carbon Nanotubes in Poly(p-phenylene) Thin Films and Their Electrical Characteristics, Particuology, 2009, 7, p 403–407CrossRef
44.
Zurück zum Zitat R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites, Scr. Mater., 2005, 53, p 1159–1163CrossRef R. George, K.T. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites, Scr. Mater., 2005, 53, p 1159–1163CrossRef
45.
Zurück zum Zitat H.J. Ryu, S.I. Cha, and S.H. Hong, Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites, J. Mater. Res., 2003, 18, p 2851–2858CrossRef H.J. Ryu, S.I. Cha, and S.H. Hong, Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites, J. Mater. Res., 2003, 18, p 2851–2858CrossRef
46.
Zurück zum Zitat S.J. Yoo, S.H. Han, and W.J. Kim, Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes, Scr. Mater., 2013, 68, p 711–714CrossRef S.J. Yoo, S.H. Han, and W.J. Kim, Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes, Scr. Mater., 2013, 68, p 711–714CrossRef
47.
Zurück zum Zitat H.J. Ryu, S.I. Cha, and S.H. Hong, Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites, J. Mater. Res., 2003, 18, p 2851–2858CrossRef H.J. Ryu, S.I. Cha, and S.H. Hong, Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites, J. Mater. Res., 2003, 18, p 2851–2858CrossRef
48.
Zurück zum Zitat R.J. Arsenault and N. Shi, Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p 175–178CrossRef R.J. Arsenault and N. Shi, Dislocation Generation due to Differences Between the Coefficients of Thermal Expansion, Mater. Sci. Eng., 1986, 81, p 175–178CrossRef
49.
Zurück zum Zitat Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54, p 1321–1326CrossRef Z. Zhang and D.L. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54, p 1321–1326CrossRef
50.
Zurück zum Zitat C.F. Deng, X.X. Zhang, D.Z. Wang, and Y.X. Ma, Calorimetric Study of Carbon Nanotubes and Aluminum, Mater. Lett., 2007, 61, p 3221–3223CrossRef C.F. Deng, X.X. Zhang, D.Z. Wang, and Y.X. Ma, Calorimetric Study of Carbon Nanotubes and Aluminum, Mater. Lett., 2007, 61, p 3221–3223CrossRef
51.
Zurück zum Zitat S.R. Bakshi, R.R. Patel, and A. Agarwal, Thermal Conductivity of Carbon Nanotube Reinforced Aluminum Composites: A Multi-scale Study Using Object Oriented Finite Element Method, Comput. Mater. Sci., 2010, 50, p 419–428CrossRef S.R. Bakshi, R.R. Patel, and A. Agarwal, Thermal Conductivity of Carbon Nanotube Reinforced Aluminum Composites: A Multi-scale Study Using Object Oriented Finite Element Method, Comput. Mater. Sci., 2010, 50, p 419–428CrossRef
52.
Zurück zum Zitat E.G. Colgan, M. Mäenpää, M. Finetti, and M.A. Nicolet, Electrical Characteristics of Thin Ni2Si, NiSi, and NiSi2 Layers Grown on Silicon, J. Electron. Mater., 1983, 12, p 413–422CrossRef E.G. Colgan, M. Mäenpää, M. Finetti, and M.A. Nicolet, Electrical Characteristics of Thin Ni2Si, NiSi, and NiSi2 Layers Grown on Silicon, J. Electron. Mater., 1983, 12, p 413–422CrossRef
53.
Zurück zum Zitat J. Foggiato, W.S. Yoo, M. Ouaknine, T. Murakami, and T. Fukada, Optimizing the Formation of Nickel Silicide, Mater. Sci. Eng. B, 2004, 114, p 56–60CrossRef J. Foggiato, W.S. Yoo, M. Ouaknine, T. Murakami, and T. Fukada, Optimizing the Formation of Nickel Silicide, Mater. Sci. Eng. B, 2004, 114, p 56–60CrossRef
54.
Zurück zum Zitat F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, and L.H. Chan, Thermal Stability Study of NiSi and NiSi2 Thin Films. Microelectron, Microelectron. Eng., 2004, 71, p 104–111CrossRef F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, and L.H. Chan, Thermal Stability Study of NiSi and NiSi2 Thin Films. Microelectron, Microelectron. Eng., 2004, 71, p 104–111CrossRef
55.
Zurück zum Zitat D.C. Dunand, NiAl Formation by Annealing of Infiltrated Aluminium-Nickel Precursors, J. Mater. Sci., 1994, 29, p 4056–4060CrossRef D.C. Dunand, NiAl Formation by Annealing of Infiltrated Aluminium-Nickel Precursors, J. Mater. Sci., 1994, 29, p 4056–4060CrossRef
56.
Zurück zum Zitat H. Okamoto, Al-Ni (Aluminum-Nickel), J Phase Equilib, 1993, 14, p 257–259CrossRef H. Okamoto, Al-Ni (Aluminum-Nickel), J Phase Equilib, 1993, 14, p 257–259CrossRef
57.
Zurück zum Zitat Qian, J. Li, J. Xiong, F. Zhang, and X. Lin, In Situ Synthesizing Al3Ni for Fabrication of Intermetallic-Reinforced Aluminum Alloy Composites by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 550, p 279–285CrossRef Qian, J. Li, J. Xiong, F. Zhang, and X. Lin, In Situ Synthesizing Al3Ni for Fabrication of Intermetallic-Reinforced Aluminum Alloy Composites by Friction Stir Processing, Mater. Sci. Eng. A, 2012, 550, p 279–285CrossRef
Metadaten
Titel
Evaluation of CNT Dispersion Methodology Effect on Mechanical Properties of an AlSi Composite
verfasst von
O. Carvalho
M. Buciumeanu
D. Soares
F. S. Silva
G. Miranda
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2015
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-015-1510-5

Weitere Artikel der Ausgabe 6/2015

Journal of Materials Engineering and Performance 6/2015 Zur Ausgabe

EditorialNotes

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.