Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2019

29.08.2018

Investigation on Microsegregation of IN718 Alloy During Additive Manufacturing via Integrated Phase-Field and Finite-Element Modeling

verfasst von: X. Wang, P. W. Liu, Y. Ji, Y. Liu, M. H. Horstemeyer, L. Chen

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we apply a multi-scale model combining finite-element method (FEM) and phase-field model (PFM) to simulate the evolution of solidification microstructures at different locations within a molten pool of an additively manufactured IN718 alloy. Specifically, the FEM is used to calculate the shape of molten pool and the relative thermal gradient G at the macroscale. Then, the calculated thermal information is input into PFM for microstructure simulation. Finally, the morphology of solidification structures and formation of Laves phase at different sites are studied and compared. We found that the solidification site with a large angle between the temperature gradient and the preferred crystalline orientation could build up a high niobium (Nb) concentration in the liquid during solidification but has less possibility of forming continuous long chain morphology of Laves phase particles. This finding provides an understanding of the microstructure evolution inside the molten pool of IN718 alloy during solidification. Further, the finding indicates that the site with a large misorientation angle will have a good hot cracking resistance after solidification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Y.N. Zhang, X. Cao, P. Wanjara, and M. Medraj, Oxide Films in Laser Additive Manufactured Inconel 718, Acta Mater., 2013, 61(17), p 6562–6576CrossRef Y.N. Zhang, X. Cao, P. Wanjara, and M. Medraj, Oxide Films in Laser Additive Manufactured Inconel 718, Acta Mater., 2013, 61(17), p 6562–6576CrossRef
2.
Zurück zum Zitat T.E. Abioye, J. Folkes, and A.T. Clare, A Parametric Study of Inconel 625 Wire Laser Deposition, J. Mater. Process. Technol., 2013, 213(12), p 2145–2151CrossRef T.E. Abioye, J. Folkes, and A.T. Clare, A Parametric Study of Inconel 625 Wire Laser Deposition, J. Mater. Process. Technol., 2013, 213(12), p 2145–2151CrossRef
3.
Zurück zum Zitat R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers, and M. Preuss, Crystallographic Texture and Microstructure of Pulsed Diode Laser-Deposited Waspaloy, Acta Mater., 2009, 57(4), p 1220–1229CrossRef R.J. Moat, A.J. Pinkerton, L. Li, P.J. Withers, and M. Preuss, Crystallographic Texture and Microstructure of Pulsed Diode Laser-Deposited Waspaloy, Acta Mater., 2009, 57(4), p 1220–1229CrossRef
4.
Zurück zum Zitat T. Baldridge, G. Poling, E. Foroozmehr, R. Kovacevic, T. Metz, V. Kadekar, and M.C. Gupta, Laser Cladding of Inconel 690 on Inconel 600 Superalloy for Corrosion Protection in Nuclear Applications, Opt. Lasers Eng., 2013, 51(2), p 180–184CrossRef T. Baldridge, G. Poling, E. Foroozmehr, R. Kovacevic, T. Metz, V. Kadekar, and M.C. Gupta, Laser Cladding of Inconel 690 on Inconel 600 Superalloy for Corrosion Protection in Nuclear Applications, Opt. Lasers Eng., 2013, 51(2), p 180–184CrossRef
5.
Zurück zum Zitat A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul, Microstructural Characteristics of Forged and Heat Treated Inconel-718 Disks, Mater. Des., 2013, 1980–2015(52), p 791–800CrossRef A. Chamanfar, L. Sarrat, M. Jahazi, M. Asadi, A. Weck, and A.K. Koul, Microstructural Characteristics of Forged and Heat Treated Inconel-718 Disks, Mater. Des., 2013, 1980–2015(52), p 791–800CrossRef
6.
Zurück zum Zitat K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting, Acta Mater., 2012, 60(5), p 2229–2239CrossRef K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, and F. Medina, Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting, Acta Mater., 2012, 60(5), p 2229–2239CrossRef
7.
Zurück zum Zitat Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metall. Mater. Trans. B, 2014, 45(4), p 1520–1529CrossRef Y. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metall. Mater. Trans. B, 2014, 45(4), p 1520–1529CrossRef
8.
Zurück zum Zitat Y.-J. Liang, X. Cheng, and H.-M. Wang, A New Microsegregation Model for Rapid Solidification Multicomponent Alloys and Its Application to Single-Crystal Nickel-Base Superalloys of Laser Rapid Directional Solidification, Acta Mater., 2016, 118, p 17–27CrossRef Y.-J. Liang, X. Cheng, and H.-M. Wang, A New Microsegregation Model for Rapid Solidification Multicomponent Alloys and Its Application to Single-Crystal Nickel-Base Superalloys of Laser Rapid Directional Solidification, Acta Mater., 2016, 118, p 17–27CrossRef
9.
Zurück zum Zitat T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, and Y. Idell, Application of Finite Element, Phase-Field, and CALPHAD-Based Methods to Additive Manufacturing of Ni-Based Superalloys, Acta Mater., 2017, 139, p 244–253CrossRef T. Keller, G. Lindwall, S. Ghosh, L. Ma, B.M. Lane, F. Zhang, U.R. Kattner, E.A. Lass, J.C. Heigel, and Y. Idell, Application of Finite Element, Phase-Field, and CALPHAD-Based Methods to Additive Manufacturing of Ni-Based Superalloys, Acta Mater., 2017, 139, p 244–253CrossRef
10.
Zurück zum Zitat P.W. Liu, Y.Z. Ji, Z. Wang, C.L. Qiu, A.A. Antonysamy, L.Q. Chen, X.Y. Cui, and L. Chen, Investigation on Evolution Mechanisms of Site-Specific Grain Structures During Metal Additive Manufacturing, J. Mater. Process. Technol., 2018, 257, p 191–202CrossRef P.W. Liu, Y.Z. Ji, Z. Wang, C.L. Qiu, A.A. Antonysamy, L.Q. Chen, X.Y. Cui, and L. Chen, Investigation on Evolution Mechanisms of Site-Specific Grain Structures During Metal Additive Manufacturing, J. Mater. Process. Technol., 2018, 257, p 191–202CrossRef
11.
Zurück zum Zitat A. Badillo and C. Beckermann, Phase-Field Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification, Acta Mater., 2006, 54(8), p 2015–2026CrossRef A. Badillo and C. Beckermann, Phase-Field Simulation of the Columnar-to-Equiaxed Transition in Alloy Solidification, Acta Mater., 2006, 54(8), p 2015–2026CrossRef
12.
Zurück zum Zitat H. Xing, X.L. Dong, C.L. Chen, J.Y. Wang, L.F. Du, and K.X. Jin, Phase-Field Simulation of Tilted Growth of Dendritic Arrays During Directional Solidification, Int. J. Heat Mass Transf., 2015, 90, p 911–921CrossRef H. Xing, X.L. Dong, C.L. Chen, J.Y. Wang, L.F. Du, and K.X. Jin, Phase-Field Simulation of Tilted Growth of Dendritic Arrays During Directional Solidification, Int. J. Heat Mass Transf., 2015, 90, p 911–921CrossRef
13.
Zurück zum Zitat G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter, INCONEL 718: A Solidification Diagram, Metall. Trans. A, 1989, 20(10), p 2149–2158CrossRef G.A. Knorovsky, M.J. Cieslak, T.J. Headley, A.D. Romig, and W.F. Hammetter, INCONEL 718: A Solidification Diagram, Metall. Trans. A, 1989, 20(10), p 2149–2158CrossRef
14.
Zurück zum Zitat R.W. Caless, J.J. Schirra, and R.W. Hatala, Superalloys 718, 625 and Various Derivatives, TMS, Warrendale, 1991 R.W. Caless, J.J. Schirra, and R.W. Hatala, Superalloys 718, 625 and Various Derivatives, TMS, Warrendale, 1991
15.
Zurück zum Zitat L. Nastac, Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys, Acta Mater., 1999, 47(17), p 4253–4262CrossRef L. Nastac, Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys, Acta Mater., 1999, 47(17), p 4253–4262CrossRef
16.
Zurück zum Zitat L. Nastac and D.M. Stefanescu, Macrotransport-solidification kinetics modeling of equiaxed dendritic growth: part I. Model development and discussion, Metall. Mater. Trans. A, 1996, 27(12), p 4061–4074CrossRef L. Nastac and D.M. Stefanescu, Macrotransport-solidification kinetics modeling of equiaxed dendritic growth: part I. Model development and discussion, Metall. Mater. Trans. A, 1996, 27(12), p 4061–4074CrossRef
17.
Zurück zum Zitat J.N. DuPont, C.V. Robino, and A.R. Marder, Modeling Solute Redistribution and Microstructural Development in Fusion Welds of Nb-Bearing Superalloys, Acta Mater., 1998, 46(13), p 4781–4790CrossRef J.N. DuPont, C.V. Robino, and A.R. Marder, Modeling Solute Redistribution and Microstructural Development in Fusion Welds of Nb-Bearing Superalloys, Acta Mater., 1998, 46(13), p 4781–4790CrossRef
18.
Zurück zum Zitat L. Chen, F. Fan, L. Hong, J. Chen, Y. Ji, S. Zhang, T. Zhu, and L. Chen, A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes, J. Electrochem. Soc., 2014, 161(11), p F3164–F3172CrossRef L. Chen, F. Fan, L. Hong, J. Chen, Y. Ji, S. Zhang, T. Zhu, and L. Chen, A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes, J. Electrochem. Soc., 2014, 161(11), p F3164–F3172CrossRef
19.
Zurück zum Zitat L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, and L.-Q. Chen, Modulation of Dendritic Patterns During Electrodeposition: A Nonlinear Phase-Field Model, J. Power Sources, 2015, 300, p 376–385CrossRef L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, and L.-Q. Chen, Modulation of Dendritic Patterns During Electrodeposition: A Nonlinear Phase-Field Model, J. Power Sources, 2015, 300, p 376–385CrossRef
20.
Zurück zum Zitat Y. Ji, L. Chen, and L.-Q. Chen, Understanding microstructure evolution during additive manufacturing of metallic alloys using phase-field modeling, Thermo-Mechanical Modeling of Additive Manufacturing, M. Gouge and P. Michaleris, Ed., Elsevier, Amsterdam, 2018, p 93–116 CrossRef Y. Ji, L. Chen, and L.-Q. Chen, Understanding microstructure evolution during additive manufacturing of metallic alloys using phase-field modeling, Thermo-Mechanical Modeling of Additive Manufacturing, M. Gouge and P. Michaleris, Ed., Elsevier, Amsterdam, 2018, p 93–116 CrossRef
21.
Zurück zum Zitat Y.Z. Ji, Z. Wang, B. Wang, Y. Chen, T. Zhang, L.Q. Chen, X. Song, and L. Chen, Effect of Meso-Scale Geometry on Piezoelectric Performances of Additively Manufactured Flexible Polymer-Pb(ZrxTi1−x)O3 Composites, Adv. Eng. Mater., 2017, 19(6), p 1600803CrossRef Y.Z. Ji, Z. Wang, B. Wang, Y. Chen, T. Zhang, L.Q. Chen, X. Song, and L. Chen, Effect of Meso-Scale Geometry on Piezoelectric Performances of Additively Manufactured Flexible Polymer-Pb(ZrxTi1−x)O3 Composites, Adv. Eng. Mater., 2017, 19(6), p 1600803CrossRef
22.
Zurück zum Zitat X. Wang, B. Wang, M. Meyerson, C.B. Mullins, Y. Fu, L. Zhu, and L. Chen, A Phase-Field Model Integrating Reaction–Diffusion Kinetics and Elasto-Plastic Deformation with Application to Lithiated Selenium-Doped Germanium Electrodes, Int. J. Mech. Sci., 2018, 144, p 158–171CrossRef X. Wang, B. Wang, M. Meyerson, C.B. Mullins, Y. Fu, L. Zhu, and L. Chen, A Phase-Field Model Integrating Reaction–Diffusion Kinetics and Elasto-Plastic Deformation with Application to Lithiated Selenium-Doped Germanium Electrodes, Int. J. Mech. Sci., 2018, 144, p 158–171CrossRef
23.
Zurück zum Zitat P. Nie, O.A. Ojo, and Z. Li, Numerical Modeling of Microstructure Evolution During Laser Additive Manufacturing of a Nickel-Based Superalloy, Acta Mater., 2014, 77, p 85–95CrossRef P. Nie, O.A. Ojo, and Z. Li, Numerical Modeling of Microstructure Evolution During Laser Additive Manufacturing of a Nickel-Based Superalloy, Acta Mater., 2014, 77, p 85–95CrossRef
24.
Zurück zum Zitat S. Ghosh, L. Ma, N. Ofori-Opoku, and J.E. Guyer, On the Primary Spacing and Microsegregation of Cellular Dendrites in Laser Deposited Ni-Nb Alloys, Model. Simul. Mater. Sci. Eng., 2017, 25(6), p 065002CrossRef S. Ghosh, L. Ma, N. Ofori-Opoku, and J.E. Guyer, On the Primary Spacing and Microsegregation of Cellular Dendrites in Laser Deposited Ni-Nb Alloys, Model. Simul. Mater. Sci. Eng., 2017, 25(6), p 065002CrossRef
25.
Zurück zum Zitat D. Tourret and A. Karma, Growth Competition of Columnar Dendritic Grains: A Phase-Field Study, Acta Mater., 2015, 82, p 64–83CrossRef D. Tourret and A. Karma, Growth Competition of Columnar Dendritic Grains: A Phase-Field Study, Acta Mater., 2015, 82, p 64–83CrossRef
26.
Zurück zum Zitat F. Yu, Y. Wei, Y. Ji, and L.-Q. Chen, Phase Field Modeling of Solidification Microstructure Evolution During Welding, J. Mater. Process. Technol., 2017, 255, p 285–293CrossRef F. Yu, Y. Wei, Y. Ji, and L.-Q. Chen, Phase Field Modeling of Solidification Microstructure Evolution During Welding, J. Mater. Process. Technol., 2017, 255, p 285–293CrossRef
27.
Zurück zum Zitat N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu, Numerical Modeling of Heat-Transfer and the Influence of Process Parameters on Tailoring the Grain Morphology of IN718 in Electron Beam Additive Manufacturing, Acta Mater., 2016, 112, p 303–314CrossRef N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu, Numerical Modeling of Heat-Transfer and the Influence of Process Parameters on Tailoring the Grain Morphology of IN718 in Electron Beam Additive Manufacturing, Acta Mater., 2016, 112, p 303–314CrossRef
28.
Zurück zum Zitat B. Echebarria, R. Folch, A. Karma, and M. Plapp, Quantitative Phase-Field Model of Alloy Solidification, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 2004, 70(6 Pt 1), p 061604CrossRef B. Echebarria, R. Folch, A. Karma, and M. Plapp, Quantitative Phase-Field Model of Alloy Solidification, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 2004, 70(6 Pt 1), p 061604CrossRef
29.
Zurück zum Zitat W. Zheng, Z. Dong, Y. Wei, K. Song, J. Guo, and Y. Wang, Phase Field Investigation of Dendrite Growth in the Welding Pool of Aluminum Alloy 2A14 Under Transient Conditions, Comput. Mater. Sci., 2014, 82, p 525–530CrossRef W. Zheng, Z. Dong, Y. Wei, K. Song, J. Guo, and Y. Wang, Phase Field Investigation of Dendrite Growth in the Welding Pool of Aluminum Alloy 2A14 Under Transient Conditions, Comput. Mater. Sci., 2014, 82, p 525–530CrossRef
30.
Zurück zum Zitat N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68CrossRef N.J. Harrison, I. Todd, and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68CrossRef
31.
Zurück zum Zitat W. Kurz and R. Trivedi, Rapid Solidification Processing and Microstructure Formation, Mater. Sci. Eng. A, 1994, 179, p 46–51CrossRef W. Kurz and R. Trivedi, Rapid Solidification Processing and Microstructure Formation, Mater. Sci. Eng. A, 1994, 179, p 46–51CrossRef
32.
Zurück zum Zitat L. Nastac and D.M. Stefanescu, Stochastic Modelling of Microstructure Formation in Solidification Processes, Model. Simul. Mater. Sci. Eng., 1997, 5(4), p 391CrossRef L. Nastac and D.M. Stefanescu, Stochastic Modelling of Microstructure Formation in Solidification Processes, Model. Simul. Mater. Sci. Eng., 1997, 5(4), p 391CrossRef
33.
Zurück zum Zitat J. Deschamps, M. Georgelin, and A. Pocheau, Growth Directions of Microstructures in Directional Solidification Of Crystalline Materials, Phys. Rev. E, 2008, 78(1), p 011605CrossRef J. Deschamps, M. Georgelin, and A. Pocheau, Growth Directions of Microstructures in Directional Solidification Of Crystalline Materials, Phys. Rev. E, 2008, 78(1), p 011605CrossRef
Metadaten
Titel
Investigation on Microsegregation of IN718 Alloy During Additive Manufacturing via Integrated Phase-Field and Finite-Element Modeling
verfasst von
X. Wang
P. W. Liu
Y. Ji
Y. Liu
M. H. Horstemeyer
L. Chen
Publikationsdatum
29.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3620-3

Weitere Artikel der Ausgabe 2/2019

Journal of Materials Engineering and Performance 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.