Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2019

06.05.2019

Effect of ECAP Die Angles on Microstructure Mechanical Properties and Corrosion Behavior of AZ80 Mg Alloy

verfasst von: Gajanan M. Naik, S. Narendranath, S. S. Satheesh Kumar

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, the effect of channel angles on material properties was investigated during equal channel angular pressing of AZ80 magnesium alloy using processing route R at 325 °C processing temperature. Channel angles of 90° and 110° and common corner angle 30° have been considered for this study. It has been revealed that the channel angle has a significant influence on deformation homogeneity, microhardness, ultimate tensile strength, ductility and corrosion behavior of Mg alloys. Investigation with reference to as-received AZ80 Mg alloy indicates 18.47% improvement in UTS and 76.07% enhancement in ductility after processing through 3P-90° and 2P-110° ECAP, respectively. Also, the corrosion rate reduces to 89.47% after processing the sample with 3P-110° ECAP die.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, and J. Robson, Review on Research and Development of Magnesium Alloys, Acta Metall. Sin., 2008, 5, p 313–328CrossRef Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, and J. Robson, Review on Research and Development of Magnesium Alloys, Acta Metall. Sin., 2008, 5, p 313–328CrossRef
2.
Zurück zum Zitat Ankur Chaurasia, Nav Rattan, and Rahul S. Mulik, Magnetic Abrasive Finishing of AZ91 Magnesium Alloy Using Electromagnet, J. Braz. Soc. Mech. Sci. Eng., 2018, 40, p 482–490CrossRef Ankur Chaurasia, Nav Rattan, and Rahul S. Mulik, Magnetic Abrasive Finishing of AZ91 Magnesium Alloy Using Electromagnet, J. Braz. Soc. Mech. Sci. Eng., 2018, 40, p 482–490CrossRef
3.
Zurück zum Zitat G.M. Naik, G.D. Gote, and S. Narendranath, Microstructural and Hardness Evolution of AZ80 Alloy after ECAP and Post-ECAP Processes, Mater. Today Proc., 2018, 5, p 17763–17768CrossRef G.M. Naik, G.D. Gote, and S. Narendranath, Microstructural and Hardness Evolution of AZ80 Alloy after ECAP and Post-ECAP Processes, Mater. Today Proc., 2018, 5, p 17763–17768CrossRef
4.
Zurück zum Zitat A. Kumar, S. Kumar, and N.K. Mukhopadhyay, Introduction to Magnesium Alloy Processing Technology and Development of Low-Cost Stir Casting Process for Magnesium Alloy and Its Composites, J. Magnes. Alloys, 2018, 5, p 1–10 A. Kumar, S. Kumar, and N.K. Mukhopadhyay, Introduction to Magnesium Alloy Processing Technology and Development of Low-Cost Stir Casting Process for Magnesium Alloy and Its Composites, J. Magnes. Alloys, 2018, 5, p 1–10
5.
Zurück zum Zitat M.H. Goodarzy, H. Arabi, M.A. Boutorabi, S.H. Seyedein, and S.H. Najafabadi, The Effects of Room Temperature ECAP and Subsequent Aging on Mechanical Properties of 2024 Al Alloy, J. Alloys Compd., 2014, 585, p p753–p759CrossRef M.H. Goodarzy, H. Arabi, M.A. Boutorabi, S.H. Seyedein, and S.H. Najafabadi, The Effects of Room Temperature ECAP and Subsequent Aging on Mechanical Properties of 2024 Al Alloy, J. Alloys Compd., 2014, 585, p p753–p759CrossRef
6.
Zurück zum Zitat S.O. Rogachev, S.A. Nikulin, V.M. Khatkevich, M.V. Gorshenkov, R.V. Sundeev, and A.A. Veligzhanin, Effect of Annealing on Structural and Phase Transformations and Mechanical Properties of Ultrafine-Grained E125 Zirconium Alloy Obtained by High-Pressure Torsion, Mater. Lett., 2017, 206, p 26–29CrossRef S.O. Rogachev, S.A. Nikulin, V.M. Khatkevich, M.V. Gorshenkov, R.V. Sundeev, and A.A. Veligzhanin, Effect of Annealing on Structural and Phase Transformations and Mechanical Properties of Ultrafine-Grained E125 Zirconium Alloy Obtained by High-Pressure Torsion, Mater. Lett., 2017, 206, p 26–29CrossRef
7.
Zurück zum Zitat M.A. Agwa, M.N. Ali, and A.E. Al-Shorbagy, Optimum Processing Parameters for Equal Channel Angular Pressing, Mech. Mater., 2016, 100, p 1–11CrossRef M.A. Agwa, M.N. Ali, and A.E. Al-Shorbagy, Optimum Processing Parameters for Equal Channel Angular Pressing, Mech. Mater., 2016, 100, p 1–11CrossRef
8.
Zurück zum Zitat Z. Zhao, Q. Chen, H. Chao, C. Hu, and S. Huang, Influence of Equal Channel Angular Extrusion Processing Parameters on the Microstructure and Mechanical Properties of Mg–Al–Y–Zn Alloy, Mater. Des., 2011, 32, p 575–583CrossRef Z. Zhao, Q. Chen, H. Chao, C. Hu, and S. Huang, Influence of Equal Channel Angular Extrusion Processing Parameters on the Microstructure and Mechanical Properties of Mg–Al–Y–Zn Alloy, Mater. Des., 2011, 32, p 575–583CrossRef
9.
Zurück zum Zitat J. Jiang, Y. Wang, Z. Du, J. Qu, Y. Sun, and S. Luo, Enhancing Room Temperature Mechanical Properties of Mg–9Al–Zn Alloy by Multi-pass Equal Channel Angular Extrusion, J. Mater. Proc. Technol., 2010, 210, p 751–758CrossRef J. Jiang, Y. Wang, Z. Du, J. Qu, Y. Sun, and S. Luo, Enhancing Room Temperature Mechanical Properties of Mg–9Al–Zn Alloy by Multi-pass Equal Channel Angular Extrusion, J. Mater. Proc. Technol., 2010, 210, p 751–758CrossRef
10.
Zurück zum Zitat Y. Tao, J.P. Huang, M.Y. Zheng, and W.U. Kun, Influence of Secondary Extrusion on Microstructures and Mechanical Properties of ZK60 Mg Alloy Processed by Extrusion and ECAP, Trans. Nonferrous Metal Soc., 2012, 22, p 1896–1901CrossRef Y. Tao, J.P. Huang, M.Y. Zheng, and W.U. Kun, Influence of Secondary Extrusion on Microstructures and Mechanical Properties of ZK60 Mg Alloy Processed by Extrusion and ECAP, Trans. Nonferrous Metal Soc., 2012, 22, p 1896–1901CrossRef
11.
Zurück zum Zitat É.F. Prados, V.L. Sordi, and M. Ferrante, Microstructural Development and Tensile Strength of an ECAP: Deformed Al-4 wt.(%) Cu Alloy, Mater. Res., 2008, 11, p 199–205CrossRef É.F. Prados, V.L. Sordi, and M. Ferrante, Microstructural Development and Tensile Strength of an ECAP: Deformed Al-4 wt.(%) Cu Alloy, Mater. Res., 2008, 11, p 199–205CrossRef
12.
Zurück zum Zitat M.H. Parsa, M. Naderi, M. Nili-Ahmadabadi, and H. Asadpour, The Evolution of Strain During Equal Channel Angular Pressing, Int. J. Mater. Form., 2008, 1, p 93–96CrossRef M.H. Parsa, M. Naderi, M. Nili-Ahmadabadi, and H. Asadpour, The Evolution of Strain During Equal Channel Angular Pressing, Int. J. Mater. Form., 2008, 1, p 93–96CrossRef
13.
Zurück zum Zitat F. Djavanroodi and M. Ebrahimi, Effect of Die Channel Angle, Friction and Back Pressure in the Equal Channel Angular Pressing Using 3D Finite Element Simulation, Mater. Sci. Eng., A;, 2010, 527, p 1230–1235CrossRef F. Djavanroodi and M. Ebrahimi, Effect of Die Channel Angle, Friction and Back Pressure in the Equal Channel Angular Pressing Using 3D Finite Element Simulation, Mater. Sci. Eng., A;, 2010, 527, p 1230–1235CrossRef
14.
Zurück zum Zitat F. Djavanroodi, B. Omranpour, M. Ebrahimi, and M. Sedighi, Designing of ECAP Parameters Based on Strain Distribution Uniformity, Nat. Sci. Mater. Int., 2012, 22, p 452–460CrossRef F. Djavanroodi, B. Omranpour, M. Ebrahimi, and M. Sedighi, Designing of ECAP Parameters Based on Strain Distribution Uniformity, Nat. Sci. Mater. Int., 2012, 22, p 452–460CrossRef
15.
Zurück zum Zitat B.V. Patil, U. Chakkingal, and T.P. Kumar, Effect of Geometric Parameters on Strain, Strain Inhomogeneity and Peak Pressure in Equal Channel Angular Pressing–A Study Based on 3D Finite Element Analysis, J. Manuf. Processes, 2015, 17, p 88–97CrossRef B.V. Patil, U. Chakkingal, and T.P. Kumar, Effect of Geometric Parameters on Strain, Strain Inhomogeneity and Peak Pressure in Equal Channel Angular Pressing–A Study Based on 3D Finite Element Analysis, J. Manuf. Processes, 2015, 17, p 88–97CrossRef
16.
Zurück zum Zitat J.W. Park and J.Y. Suh, Effect of Die Shape on the Deformation Behavior in Equal-Channel Angular Pressing, Metall. Mater. Trans. A, 2001, 32, p 3007–3010CrossRef J.W. Park and J.Y. Suh, Effect of Die Shape on the Deformation Behavior in Equal-Channel Angular Pressing, Metall. Mater. Trans. A, 2001, 32, p 3007–3010CrossRef
17.
Zurück zum Zitat G.M. Naik, G.D. Gote, S. Narendranath, and S.S. Kumar, The Impact of Homogenization Treatment on Microstructure Microhardness and Corrosion Behavior of Wrought AZ80 Magnesium Alloys in 3.5 wt.% NaCl Solution, Mater. Res. Express, 2018, 5, p 086513CrossRef G.M. Naik, G.D. Gote, S. Narendranath, and S.S. Kumar, The Impact of Homogenization Treatment on Microstructure Microhardness and Corrosion Behavior of Wrought AZ80 Magnesium Alloys in 3.5 wt.% NaCl Solution, Mater. Res. Express, 2018, 5, p 086513CrossRef
18.
Zurück zum Zitat J. Zhang, Z. Kang, and F. Wang, Mechanical Properties and Biocorrosion Resistance of the Mg-Gd-Nd-Zn-Zr Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng., C;, 2016, 68, p 194–197CrossRef J. Zhang, Z. Kang, and F. Wang, Mechanical Properties and Biocorrosion Resistance of the Mg-Gd-Nd-Zn-Zr Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng., C;, 2016, 68, p 194–197CrossRef
19.
Zurück zum Zitat J.A. Del Valle and O.A. Ruano, Influence of Texture on Dynamic Recrystallization and Deformation Mechanisms in Rolled or ECAPed AZ31 Magnesium Alloy, Mater. Sci. Eng., A, 2008, 487, p 473–480CrossRef J.A. Del Valle and O.A. Ruano, Influence of Texture on Dynamic Recrystallization and Deformation Mechanisms in Rolled or ECAPed AZ31 Magnesium Alloy, Mater. Sci. Eng., A, 2008, 487, p 473–480CrossRef
20.
Zurück zum Zitat K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574CrossRef K. Huang and R.E. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574CrossRef
21.
Zurück zum Zitat R.B. Figueiredo, I.J. Beyerlein, A.P. Zhilyaev, and T.G. Langdon, Evolution of Texture in a Magnesium Alloy Processed by ECAP Through Dies with Different Angles, Mater. Sci. Eng., A, 2010, 527, p 1709–1718CrossRef R.B. Figueiredo, I.J. Beyerlein, A.P. Zhilyaev, and T.G. Langdon, Evolution of Texture in a Magnesium Alloy Processed by ECAP Through Dies with Different Angles, Mater. Sci. Eng., A, 2010, 527, p 1709–1718CrossRef
22.
Zurück zum Zitat Y.G. Jin, I.H. Son, S.H. Kang, and Y.T. Im, Three-Dimensional Finite Element Analysis of Multi-pass Equal-Channel Angular Extrusion of Aluminum AA1050 with Split Dies, Mater. Sci. Eng., A;, 2009, 503, p 152–155CrossRef Y.G. Jin, I.H. Son, S.H. Kang, and Y.T. Im, Three-Dimensional Finite Element Analysis of Multi-pass Equal-Channel Angular Extrusion of Aluminum AA1050 with Split Dies, Mater. Sci. Eng., A;, 2009, 503, p 152–155CrossRef
23.
Zurück zum Zitat M. Abbasi, A. Kermanpur, and R. Emadi, Effects of Thermo-Mechanical Processing on the Mechanical Properties and Shape Recovery of the Nanostructured Ti50Ni45Cu5 Shape Memory Alloy, Proc. Mater. Sci., 2015, 11, p 61–66CrossRef M. Abbasi, A. Kermanpur, and R. Emadi, Effects of Thermo-Mechanical Processing on the Mechanical Properties and Shape Recovery of the Nanostructured Ti50Ni45Cu5 Shape Memory Alloy, Proc. Mater. Sci., 2015, 11, p 61–66CrossRef
24.
Zurück zum Zitat P. Lukáč, R. Kocich, M. Greger, O. Padalka, and Z. Szaraz, Microstructure of AZ31 and AZ61 Mg Alloys Prepared by Rolling and ECAP, Kovove Mater., 2007, 45, p 115–120 P. Lukáč, R. Kocich, M. Greger, O. Padalka, and Z. Szaraz, Microstructure of AZ31 and AZ61 Mg Alloys Prepared by Rolling and ECAP, Kovove Mater., 2007, 45, p 115–120
25.
Zurück zum Zitat M. Hradilová, D. Vojtěch, J. Kubásek, J. Čapek, and M. Vlach, Structural and Mechanical Characteristics of Mg–4Zn and Mg–4Zn–0.4 Ca Alloys After Different Thermal and Mechanical Processing Routes, Mater. Sci. Eng., A, 2013, 586, p 284–291CrossRef M. Hradilová, D. Vojtěch, J. Kubásek, J. Čapek, and M. Vlach, Structural and Mechanical Characteristics of Mg–4Zn and Mg–4Zn–0.4 Ca Alloys After Different Thermal and Mechanical Processing Routes, Mater. Sci. Eng., A, 2013, 586, p 284–291CrossRef
26.
Zurück zum Zitat L. Zhou, Y. Liu, J. Zhang, and Z. Kang, Microstructure and Mechanical Properties of Equal Channel Angular Pressed Mg–Y–RE–Zr Alloy, Mater. Sci. Technol., 2016, 32, p 969–975CrossRef L. Zhou, Y. Liu, J. Zhang, and Z. Kang, Microstructure and Mechanical Properties of Equal Channel Angular Pressed Mg–Y–RE–Zr Alloy, Mater. Sci. Technol., 2016, 32, p 969–975CrossRef
27.
Zurück zum Zitat I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald, and M. Niewczas, Effects of Heat Treatment on Microstructure and Tensile Deformation of Mg AZ80 Alloy at Room Temperature, Mater. Sci. Eng., A, 2008, 496, p 247–255CrossRef I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald, and M. Niewczas, Effects of Heat Treatment on Microstructure and Tensile Deformation of Mg AZ80 Alloy at Room Temperature, Mater. Sci. Eng., A, 2008, 496, p 247–255CrossRef
28.
Zurück zum Zitat S. Kleiner, O. Beffort, A. Wahlen, and P.J. Uggowitzer, Microstructure and Mechanical Properties of Squeeze Cast and Semi-Solid Cast Mg–Al Alloys, J. Light Metals, 2002, 2, p 277–280CrossRef S. Kleiner, O. Beffort, A. Wahlen, and P.J. Uggowitzer, Microstructure and Mechanical Properties of Squeeze Cast and Semi-Solid Cast Mg–Al Alloys, J. Light Metals, 2002, 2, p 277–280CrossRef
29.
Zurück zum Zitat P. Schall, M. Feuerbacher, M. Bartsch, U. Messerschmidt, and K. Urban, Dislocation Density Evolution Upon Plastic Deformation of Al-Pd-Mn Single Quasicrystals, Philos. Mag. Lett., 1999, 79, p 785–796CrossRef P. Schall, M. Feuerbacher, M. Bartsch, U. Messerschmidt, and K. Urban, Dislocation Density Evolution Upon Plastic Deformation of Al-Pd-Mn Single Quasicrystals, Philos. Mag. Lett., 1999, 79, p 785–796CrossRef
30.
Zurück zum Zitat T.I. Wenming, L.I. Songmei, L.I. Jianhua, Y.U. Mei, and D.U. Yujie, Preparation of Bimodal Grain Size 7075 Aviation Aluminum Alloys and Their Corrosion Properties, Chin. J. Aeronaut., 2017, 30, p 1777–1788CrossRef T.I. Wenming, L.I. Songmei, L.I. Jianhua, Y.U. Mei, and D.U. Yujie, Preparation of Bimodal Grain Size 7075 Aviation Aluminum Alloys and Their Corrosion Properties, Chin. J. Aeronaut., 2017, 30, p 1777–1788CrossRef
31.
Zurück zum Zitat W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Texture Development and Its Effect on Mechanical Properties of an AZ61 Mg Alloy Fabricated by Equal Channel Angular Pressing, Acta Mater., 2003, 51, p 3293–3307CrossRef W.J. Kim, S.I. Hong, Y.S. Kim, S.H. Min, H.T. Jeong, and J.D. Lee, Texture Development and Its Effect on Mechanical Properties of an AZ61 Mg Alloy Fabricated by Equal Channel Angular Pressing, Acta Mater., 2003, 51, p 3293–3307CrossRef
32.
Zurück zum Zitat L. Wang, E. Mostaed, X. Cao, G. Huang, A. Fabrizi, F. Bonollo, C. Chi, and M. Vedani, Effects of Texture and Grain Size on Mechanical Properties of AZ80 Magnesium Alloys at Lower Temperatures, Mater. Des., 2016, 89, p 1–8CrossRef L. Wang, E. Mostaed, X. Cao, G. Huang, A. Fabrizi, F. Bonollo, C. Chi, and M. Vedani, Effects of Texture and Grain Size on Mechanical Properties of AZ80 Magnesium Alloys at Lower Temperatures, Mater. Des., 2016, 89, p 1–8CrossRef
33.
Zurück zum Zitat M. Avvari and M. Able, Microstructure Evolution in AZ61 Alloy Processed by Equal Channel Angular Pressing, Adv. Mech. Eng., 2016, 8, p 1687814016651820CrossRef M. Avvari and M. Able, Microstructure Evolution in AZ61 Alloy Processed by Equal Channel Angular Pressing, Adv. Mech. Eng., 2016, 8, p 1687814016651820CrossRef
34.
Zurück zum Zitat S. Upadhayay, H. Li, P. Bowen, and A. Rabiei, A Study on Tensile Properties of Alloy 709, at Various Temperatures, Mater. Sci. Eng., A, 2018, 733, p 338–349CrossRef S. Upadhayay, H. Li, P. Bowen, and A. Rabiei, A Study on Tensile Properties of Alloy 709, at Various Temperatures, Mater. Sci. Eng., A, 2018, 733, p 338–349CrossRef
35.
Zurück zum Zitat K.R. Gopi and H.S. Nayaka, Tribological and Corrosion Properties of AM70 Magnesium Alloy Processed by Equal Channel Angular Pressing, J. Mater. Res., 2017, 32, p 2153–2160CrossRef K.R. Gopi and H.S. Nayaka, Tribological and Corrosion Properties of AM70 Magnesium Alloy Processed by Equal Channel Angular Pressing, J. Mater. Res., 2017, 32, p 2153–2160CrossRef
36.
Zurück zum Zitat M. Gobara, M. Shamekh, and R. Akid, Improving the Corrosion Resistance of AZ91D Magnesium Alloy Through Reinforcement with Titanium Carbides and Borides, J. Magnes. Alloys, 2015, 3, p 112–120CrossRef M. Gobara, M. Shamekh, and R. Akid, Improving the Corrosion Resistance of AZ91D Magnesium Alloy Through Reinforcement with Titanium Carbides and Borides, J. Magnes. Alloys, 2015, 3, p 112–120CrossRef
37.
Zurück zum Zitat G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corrs. Sci., 2012, 58, p 145–151CrossRef G.R. Argade, S.K. Panigrahi, and R.S. Mishra, Effects of Grain Size on the Corrosion Resistance of Wrought Magnesium Alloys Containing Neodymium, Corrs. Sci., 2012, 58, p 145–151CrossRef
38.
Zurück zum Zitat M. Pourbaix, Thermodynamics and Corrosion, Corrs. Sci., 1990, 30, p 963–988CrossRef M. Pourbaix, Thermodynamics and Corrosion, Corrs. Sci., 1990, 30, p 963–988CrossRef
39.
Zurück zum Zitat O. Lunder, J.E. Lein, S.M. Hesjevik, T.K. Aune, and K. Nişancioğlu, Corrosion Morphologies on Magnesium Alloy AZ 91, Mater Corrs., 1994, 45, p 331–340 O. Lunder, J.E. Lein, S.M. Hesjevik, T.K. Aune, and K. Nişancioğlu, Corrosion Morphologies on Magnesium Alloy AZ 91, Mater Corrs., 1994, 45, p 331–340
40.
Zurück zum Zitat I.B. Singh, M. Singh, and S. Das, A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution, J. Magnes. Alloys, 2015, 3, p 142–148CrossRef I.B. Singh, M. Singh, and S. Das, A Comparative Corrosion Behavior of Mg, AZ31 and AZ91 Alloys in 3.5% NaCl Solution, J. Magnes. Alloys, 2015, 3, p 142–148CrossRef
41.
Zurück zum Zitat M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater Sci., 2017, 89, p 92–193CrossRef M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater Sci., 2017, 89, p 92–193CrossRef
42.
Zurück zum Zitat L.X. Wang, R.B. Song, C.H. Cai, and J.Y. Li, Enhanced Strength and Corrosion Resistance of Mg–2Zn–0.6 Zr Alloy with Extrusion, Acta Metall. Sin., 2018, 32, p 1–13CrossRef L.X. Wang, R.B. Song, C.H. Cai, and J.Y. Li, Enhanced Strength and Corrosion Resistance of Mg–2Zn–0.6 Zr Alloy with Extrusion, Acta Metall. Sin., 2018, 32, p 1–13CrossRef
Metadaten
Titel
Effect of ECAP Die Angles on Microstructure Mechanical Properties and Corrosion Behavior of AZ80 Mg Alloy
verfasst von
Gajanan M. Naik
S. Narendranath
S. S. Satheesh Kumar
Publikationsdatum
06.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04080-5

Weitere Artikel der Ausgabe 5/2019

Journal of Materials Engineering and Performance 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.