Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2019

25.10.2019

Elucidating the Effect of TiB2 Volume Percentage on the Mechanical Properties and Corrosion Behavior of Al5083-TiB2 Composites

verfasst von: Alireza Jafari Pirlari, Massoud Emamy, Ahmad Ali Amadeh, Meysam Naghizadeh

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Al5083-TiB2 in situ composites with 1, 3, and 5 volume percentages of TiB2 were fabricated. The effect of different volume percentages of TiB2 reinforcement particles on the mechanical properties and corrosion resistance of these composites was investigated. The hot extrusion process resulted in fragmentation and more homogeneous distribution of TiB2 particles throughout the Al5083 matrix. Also, the grain size reduced as the amount of TiB2 reinforcement particles increased which caused the improvement of both the strength and ductility of the material. It was shown that the hardness, the ultimate tensile strength (UTS), and the yield strength (YS) of both the as-cast and extruded materials increased with increasing TiB2 content. Also, TiB2 addition combined with the extrusion process improved both UTS and elongation (El.%) of the extruded structures which can be attributed to the presence of TiB2 particles and obtained microstructural refinement by hot extrusion process. However, the extruded Al5083-5 vol.% TiB2 composite showed lower ductility in comparison with the extruded Al5083-1 vol.% TiB2 and Al5083-3 vol.% TiB2 composites. Moreover, it could be concluded that the corrosion resistance and also the pitting corrosion behavior of the Al5083 alloy do not significantly change in the presence of TiB2 reinforcement particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Kaibyshev, F. Musin, E. Avtokratova, and Y. Motohashi, Deformation Behavior of a Modified 5083 Aluminum Alloy, Mater. Sci. Eng. A, 2005, 392, p 373–379 R. Kaibyshev, F. Musin, E. Avtokratova, and Y. Motohashi, Deformation Behavior of a Modified 5083 Aluminum Alloy, Mater. Sci. Eng. A, 2005, 392, p 373–379
2.
Zurück zum Zitat Ian Polmear, Light Alloys from Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Melbourne, 2006 Ian Polmear, Light Alloys from Traditional Alloys to Nanocrystals, 4th ed., Elsevier, Melbourne, 2006
3.
Zurück zum Zitat D. Witkin, B.Q. Han, and E.J. Lavernia, Microstructural Evolution of an Ultrafine-Grained Cryomilled Al 5083 Alloy During Thermo-Mechanical Processing, J. Mater. Res. Soc., 2005, 20, p 2117–2126 D. Witkin, B.Q. Han, and E.J. Lavernia, Microstructural Evolution of an Ultrafine-Grained Cryomilled Al 5083 Alloy During Thermo-Mechanical Processing, J. Mater. Res. Soc., 2005, 20, p 2117–2126
4.
Zurück zum Zitat K.T. Park, D.Y. Hwang, S.Y. Chang, and D.H. Shin, Low-Temperature Superplastic Behavior of a Submicrometer-Grained 5083 Al Alloy Fabricated by Severe Plastic Deformation, Metall. Mater. Trans. A, 2002, 33A, p 2859–2867 K.T. Park, D.Y. Hwang, S.Y. Chang, and D.H. Shin, Low-Temperature Superplastic Behavior of a Submicrometer-Grained 5083 Al Alloy Fabricated by Severe Plastic Deformation, Metall. Mater. Trans. A, 2002, 33A, p 2859–2867
5.
Zurück zum Zitat S.G. Kang, Y.S. Na, K.Y. Park, J.E. Jeon, S.C. Son, and J.H. Lee, A Study on the Micro Formability of Al 5083 Superplastic Alloy Using Micro-Forging Method, Mater. Sci. Eng. A, 2007, 449–451, p 338–342 S.G. Kang, Y.S. Na, K.Y. Park, J.E. Jeon, S.C. Son, and J.H. Lee, A Study on the Micro Formability of Al 5083 Superplastic Alloy Using Micro-Forging Method, Mater. Sci. Eng. A, 2007, 449–451, p 338–342
6.
Zurück zum Zitat V.L. Tellkamp and E.J. Lavernia, Processing and Mechanical Properties of Nanocrystalline 5083 Al Alloy, Acta Metall., 1999, 12, p 249–252 V.L. Tellkamp and E.J. Lavernia, Processing and Mechanical Properties of Nanocrystalline 5083 Al Alloy, Acta Metall., 1999, 12, p 249–252
7.
Zurück zum Zitat S.K. Thakur and M. Gupta, Improving Mechanical Performance of Al by Using Ti as Reinforcement, Composites, 2007, 38A, p 1010–1018 S.K. Thakur and M. Gupta, Improving Mechanical Performance of Al by Using Ti as Reinforcement, Composites, 2007, 38A, p 1010–1018
8.
Zurück zum Zitat R. Bauri, D. Yadav, C.N.S. Kumar, and B. Balaji, Tungsten Particle Reinforced Al5083 Composite with High Strength and Ductility, Mater. Sci. Eng. A, 2014, 620, p 67–75 R. Bauri, D. Yadav, C.N.S. Kumar, and B. Balaji, Tungsten Particle Reinforced Al5083 Composite with High Strength and Ductility, Mater. Sci. Eng. A, 2014, 620, p 67–75
9.
Zurück zum Zitat A. Alizadeh, A. Abdollahi, and H. Biukani, Creep Behavior and Wear Resistance of Al 5083 Based Hybrid Composites Reinforced with Carbon Nanotubes (CNTs) And Boron Carbide (B4C), J. Alloy. Compd., 2015, 650, p 783–793 A. Alizadeh, A. Abdollahi, and H. Biukani, Creep Behavior and Wear Resistance of Al 5083 Based Hybrid Composites Reinforced with Carbon Nanotubes (CNTs) And Boron Carbide (B4C), J. Alloy. Compd., 2015, 650, p 783–793
10.
Zurück zum Zitat S.A. Hossieni, K. Ranjbar, R. Dehmolaei, and A.R. Amirani, Fabrication of AL5083 Surface Composites Reinforced by CNTs and Cerium Oxide Nano Particles via Friction Stir Processing, J. Alloy. Compd., 2015, 622, p 725–733 S.A. Hossieni, K. Ranjbar, R. Dehmolaei, and A.R. Amirani, Fabrication of AL5083 Surface Composites Reinforced by CNTs and Cerium Oxide Nano Particles via Friction Stir Processing, J. Alloy. Compd., 2015, 622, p 725–733
11.
Zurück zum Zitat S. Bathula, R.C. Anandani, A. Dhar, and A.K. Srivastava, Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Nanocomposites Produced by High Energy Ball Milling and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 545, p 97–102 S. Bathula, R.C. Anandani, A. Dhar, and A.K. Srivastava, Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Nanocomposites Produced by High Energy Ball Milling and Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 545, p 97–102
12.
Zurück zum Zitat Y. Birol, In-Situ Synthesis of Al-TiCp Composites by Reacting K2TiF6 and Particulate Graphite in Molten Aluminium, J. Alloy. Compd., 2008, 454, p 110–117 Y. Birol, In-Situ Synthesis of Al-TiCp Composites by Reacting K2TiF6 and Particulate Graphite in Molten Aluminium, J. Alloy. Compd., 2008, 454, p 110–117
13.
Zurück zum Zitat R. Bauri, Synthesis of Al-TiC In Situ Composites: Effect of Processing Temperature and Ti: C Ratio, Trans. Indian Inst. Met., 2009, 62, p 391–395 R. Bauri, Synthesis of Al-TiC In Situ Composites: Effect of Processing Temperature and Ti: C Ratio, Trans. Indian Inst. Met., 2009, 62, p 391–395
14.
Zurück zum Zitat S. Zhang, Y. Zhao, G. Chen, X. Cheng, and X. Huo, Fabrication and Dry Sliding Wear Behavior of In Situ Al-K2ZrF6-KBF4 Composites Reinforced by Al3Zr and ZrB2 Particles, J. Alloy. Compd., 2008, 450, p 185–192 S. Zhang, Y. Zhao, G. Chen, X. Cheng, and X. Huo, Fabrication and Dry Sliding Wear Behavior of In Situ Al-K2ZrF6-KBF4 Composites Reinforced by Al3Zr and ZrB2 Particles, J. Alloy. Compd., 2008, 450, p 185–192
15.
Zurück zum Zitat K. Tian, Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, and X. Wu, Effects of In Situ Generated ZrB2 Nano-Particles on Microstructure and Tensile Properties of 2024 Al Matrix Composites, J. Alloy. Compd., 2014, 594, p 1–6 K. Tian, Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, and X. Wu, Effects of In Situ Generated ZrB2 Nano-Particles on Microstructure and Tensile Properties of 2024 Al Matrix Composites, J. Alloy. Compd., 2014, 594, p 1–6
16.
Zurück zum Zitat I. Dinaharan, N. Murugan, and S. Parameswaran, Influence of In Situ Formed ZrB2 Particles on Microstructure and Mechanical Properties of AA6061 Metal Matrix Composites, Mater. Sci. Eng. A, 2011, 528, p 5733–5740 I. Dinaharan, N. Murugan, and S. Parameswaran, Influence of In Situ Formed ZrB2 Particles on Microstructure and Mechanical Properties of AA6061 Metal Matrix Composites, Mater. Sci. Eng. A, 2011, 528, p 5733–5740
17.
Zurück zum Zitat S.S.S. Kumari, U.T.S. Pillai, and B.C. Pai, Synthesis and Characterization of In Situ Al-AlN Composite by Nitrogen Gas Bubbling Method, J. Alloy. Compd., 2011, 509, p 2503–2509 S.S.S. Kumari, U.T.S. Pillai, and B.C. Pai, Synthesis and Characterization of In Situ Al-AlN Composite by Nitrogen Gas Bubbling Method, J. Alloy. Compd., 2011, 509, p 2503–2509
18.
Zurück zum Zitat S. Fale, A. Likhite, and J. Bhatt, Nucleation Criteria for the Formation of Aluminum Nitride in Aluminum Matrix by Nitridation, Trans. Indian Inst. Met., 2013, 66, p 265–271 S. Fale, A. Likhite, and J. Bhatt, Nucleation Criteria for the Formation of Aluminum Nitride in Aluminum Matrix by Nitridation, Trans. Indian Inst. Met., 2013, 66, p 265–271
19.
Zurück zum Zitat B. Yang, M. Sun, G. Gan, C. Xu, Z. Huang, H. Zhang, and Z. Zak, In-Situ Al2O3 Particle-Reinforced Al and Cu Matrix Composites Synthesized by Displacement Reactions, J. Alloy. Compd., 2010, 494, p 261–265 B. Yang, M. Sun, G. Gan, C. Xu, Z. Huang, H. Zhang, and Z. Zak, In-Situ Al2O3 Particle-Reinforced Al and Cu Matrix Composites Synthesized by Displacement Reactions, J. Alloy. Compd., 2010, 494, p 261–265
20.
Zurück zum Zitat M. Hoseini and M. Meratian, Fabrication of In Situ Aluminum-Alumina Composite with Glass Powder, J. Alloy. Compd., 2009, 471, p 378–382 M. Hoseini and M. Meratian, Fabrication of In Situ Aluminum-Alumina Composite with Glass Powder, J. Alloy. Compd., 2009, 471, p 378–382
21.
Zurück zum Zitat R. Hadian, M. Emamy, N. Varahram, and N. Nemati, The Effect of Li on the Tensile Properties of Cast Al-Mg2Si Metal Matrix Composite, Mater. Sci. Eng. A, 2008, 490, p 250–257 R. Hadian, M. Emamy, N. Varahram, and N. Nemati, The Effect of Li on the Tensile Properties of Cast Al-Mg2Si Metal Matrix Composite, Mater. Sci. Eng. A, 2008, 490, p 250–257
22.
Zurück zum Zitat M. Emamy, H.R.J. Nodooshan, and A. Malekan, The Microstructure, Hardness and Tensile Properties of Al-15% Mg2Si In Situ Composite With Yttrium Addition, Mater. Des., 2011, 32, p 4559–4566 M. Emamy, H.R.J. Nodooshan, and A. Malekan, The Microstructure, Hardness and Tensile Properties of Al-15% Mg2Si In Situ Composite With Yttrium Addition, Mater. Des., 2011, 32, p 4559–4566
23.
Zurück zum Zitat T. Hong, X. Li, H. Wang, C. Dong, and K. Wang, Effects of TiB2 Particles on Aging Behavior of In Situ TiB2/Al-Cu-Mg Composites, Mater. Sci. Eng. A, 2015, 624, p 110–117 T. Hong, X. Li, H. Wang, C. Dong, and K. Wang, Effects of TiB2 Particles on Aging Behavior of In Situ TiB2/Al-Cu-Mg Composites, Mater. Sci. Eng. A, 2015, 624, p 110–117
24.
Zurück zum Zitat C. Mallikarjuna, S.M. Shashidhara, U.S. Mallik, and K.I. Parashivamurthy, Grain Refinement and Wear Properties Evaluation of Aluminum Alloy 2014 Matrix-TiB2 In Situ Composites, Mater. Des., 2011, 32, p 3554–3559 C. Mallikarjuna, S.M. Shashidhara, U.S. Mallik, and K.I. Parashivamurthy, Grain Refinement and Wear Properties Evaluation of Aluminum Alloy 2014 Matrix-TiB2 In Situ Composites, Mater. Des., 2011, 32, p 3554–3559
25.
Zurück zum Zitat S.H. Nandam, S. Sankaran, and B.S. Murty, Precipitation Kinetics in Al-Si-Mg/TiB2 In-Situ Composites, Trans. Indian Inst. Met., 2011, 64, p 123–126 S.H. Nandam, S. Sankaran, and B.S. Murty, Precipitation Kinetics in Al-Si-Mg/TiB2 In-Situ Composites, Trans. Indian Inst. Met., 2011, 64, p 123–126
26.
Zurück zum Zitat M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of In situ TiB2/A356 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254 M. Wang, D. Chen, Z. Chen, Y. Wu, F. Wang, N. Ma, and H. Wang, Mechanical Properties of In situ TiB2/A356 Composites, Mater. Sci. Eng. A, 2014, 590, p 246–254
27.
Zurück zum Zitat K.L. Tee, L. Lu, and M.O. Lai, In-Situ Processing of Al-TiB2 Composite by the Stir-Casting Technique, J. Mater. Process. Technol., 1999, 89–90, p 513–519 K.L. Tee, L. Lu, and M.O. Lai, In-Situ Processing of Al-TiB2 Composite by the Stir-Casting Technique, J. Mater. Process. Technol., 1999, 89–90, p 513–519
28.
Zurück zum Zitat S.L. Pramod, S.R. Bakshi, and B.S. Murty, Aluminum-Based Cast In-Situ Composites: A Review, J. Mater. Eng. Perform., 2015, 24, p 2158–2207 S.L. Pramod, S.R. Bakshi, and B.S. Murty, Aluminum-Based Cast In-Situ Composites: A Review, J. Mater. Eng. Perform., 2015, 24, p 2158–2207
29.
Zurück zum Zitat P. Davies, J.L.F. Kellie, D.P. Parton, London and Scandinavian, Co. Ld., Patent, 1993, WO 93/05189 P. Davies, J.L.F. Kellie, D.P. Parton, London and Scandinavian, Co. Ld., Patent, 1993, WO 93/05189
30.
Zurück zum Zitat M.K. Akbari, H.R. Baharvandi, and K. Shirvanimoghaddam, Tensile and Fracture Behavior of Nano/Micro TiB2 Particle Reinforced Casting A356 Aluminum Alloy Composites, Mater. Des., 2015, 66, p 150–161 M.K. Akbari, H.R. Baharvandi, and K. Shirvanimoghaddam, Tensile and Fracture Behavior of Nano/Micro TiB2 Particle Reinforced Casting A356 Aluminum Alloy Composites, Mater. Des., 2015, 66, p 150–161
31.
Zurück zum Zitat T. Wang, Y. Zheng, Z. Chen, Y. Zhao, and H. Kang, Effects of Sr on the Microstructure and Mechanical Properties of In Situ TiB2 Reinforced A356 Composite, Mater. Des., 2014, 64, p 185–193 T. Wang, Y. Zheng, Z. Chen, Y. Zhao, and H. Kang, Effects of Sr on the Microstructure and Mechanical Properties of In Situ TiB2 Reinforced A356 Composite, Mater. Des., 2014, 64, p 185–193
32.
Zurück zum Zitat G. Han, W. Zhang, G. Zhang, Z. Feng, and Y. Wang, High-Temperature Mechanical Properties and Fracture Mechanisms of Al-Si Piston Alloy Reinforced with In Situ TiB2 Particles, Mater. Sci. Eng. A, 2015, 633, p 161–168 G. Han, W. Zhang, G. Zhang, Z. Feng, and Y. Wang, High-Temperature Mechanical Properties and Fracture Mechanisms of Al-Si Piston Alloy Reinforced with In Situ TiB2 Particles, Mater. Sci. Eng. A, 2015, 633, p 161–168
33.
Zurück zum Zitat H.B.M. Rajan, S. Ramabalan, I. Dinaharan, and S.J. Vijay, Synthesis and Characterization of In Situ Formed Titanium Diboride Particulate Reinforced AA7075 Aluminum Alloy Cast Composites, Mater. Des., 2013, 44, p 438–445 H.B.M. Rajan, S. Ramabalan, I. Dinaharan, and S.J. Vijay, Synthesis and Characterization of In Situ Formed Titanium Diboride Particulate Reinforced AA7075 Aluminum Alloy Cast Composites, Mater. Des., 2013, 44, p 438–445
34.
Zurück zum Zitat Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, and L. Gao, Development of TiB2 Reinforced Aluminum Foundry Alloy Based In Situ Composites: Part I: An Improved Halide Salt Route to Fabricate Al-5 wt.% TiB2 Master Composite, Mater. Sci. Eng. A, 2014, 605, p 301–309 Z. Chen, T. Wang, Y. Zheng, Y. Zhao, H. Kang, and L. Gao, Development of TiB2 Reinforced Aluminum Foundry Alloy Based In Situ Composites: Part I: An Improved Halide Salt Route to Fabricate Al-5 wt.% TiB2 Master Composite, Mater. Sci. Eng. A, 2014, 605, p 301–309
35.
Zurück zum Zitat T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, and L. Gao, Development of TiB2 reinforced Aluminum Foundry Alloy Based In Situ Composites: Part II: enhancing the Practical Aluminum Foundry Alloys, Using the Improved Al-5 wt.% TiB2 Master Composite Upon Dilution, Mater. Sci. Eng. A, 2014, 605, p 22–32 T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, and L. Gao, Development of TiB2 reinforced Aluminum Foundry Alloy Based In Situ Composites: Part II: enhancing the Practical Aluminum Foundry Alloys, Using the Improved Al-5 wt.% TiB2 Master Composite Upon Dilution, Mater. Sci. Eng. A, 2014, 605, p 22–32
36.
Zurück zum Zitat F. Chen, Z. Chen, F. Mao, T. Wang, and Z. Cao, TiB2 Reinforced Aluminum Based In Situ Composites Fabricated by Stir Casting, Mater. Sci. Eng. A, 2015, 625, p 357–368 F. Chen, Z. Chen, F. Mao, T. Wang, and Z. Cao, TiB2 Reinforced Aluminum Based In Situ Composites Fabricated by Stir Casting, Mater. Sci. Eng. A, 2015, 625, p 357–368
37.
Zurück zum Zitat S. Kumar, M. Chakraborty, V. Subramanya Sarma, and B.S. Murty, Tensile and Wear Behavior of In Situ Al-7Si/TiB2 Particulate Composites, Wear, 2008, 265, p 134–142 S. Kumar, M. Chakraborty, V. Subramanya Sarma, and B.S. Murty, Tensile and Wear Behavior of In Situ Al-7Si/TiB2 Particulate Composites, Wear, 2008, 265, p 134–142
38.
Zurück zum Zitat A. Mandal, B.S. Murty, and M. Chakraborty, Sliding Wear Behavior of T6 Treated A356- TiB2 In Situ Composites, Wear, 2009, 266, p 865–872 A. Mandal, B.S. Murty, and M. Chakraborty, Sliding Wear Behavior of T6 Treated A356- TiB2 In Situ Composites, Wear, 2009, 266, p 865–872
39.
Zurück zum Zitat C.S. Ramesh and A. Ahamed, Friction and Wear Behaviour of Cast Al 6063 Based In Situ Metal Matrix Composites, Wear, 2011, 271, p 1928–1939 C.S. Ramesh and A. Ahamed, Friction and Wear Behaviour of Cast Al 6063 Based In Situ Metal Matrix Composites, Wear, 2011, 271, p 1928–1939
40.
Zurück zum Zitat K. Niranjan and P.R. Lakshminarayanan, Dry Sliding Wear Behaviour Of In Situ Al-TiB2 Composites, Mater. Des., 2013, 47, p 167–173 K. Niranjan and P.R. Lakshminarayanan, Dry Sliding Wear Behaviour Of In Situ Al-TiB2 Composites, Mater. Des., 2013, 47, p 167–173
41.
Zurück zum Zitat S. Suresh, N.S.V. Moorthi, S.C. Vettivel, and N. Selvakumar, Mechanical behavior and wear prediction of stir cast Al-TiB2 composites using response surface methodology, Mater. Des., 2014, 59, p 383–396 S. Suresh, N.S.V. Moorthi, S.C. Vettivel, and N. Selvakumar, Mechanical behavior and wear prediction of stir cast Al-TiB2 composites using response surface methodology, Mater. Des., 2014, 59, p 383–396
42.
Zurück zum Zitat J. Geng, T. Hong, Y. Ma, M. Wang, D. Chen, N. Ma, and H. Wang, The Solution Treatment of In Situ Sub-Micron TiB2/2024 Al Composite, Mater. Des., 2016, 98, p 186–193 J. Geng, T. Hong, Y. Ma, M. Wang, D. Chen, N. Ma, and H. Wang, The Solution Treatment of In Situ Sub-Micron TiB2/2024 Al Composite, Mater. Des., 2016, 98, p 186–193
43.
Zurück zum Zitat Z. Chen, G.A. Sun, Y. Wu, M.H. Mathon, A. Borbely, D. Chen, G. Ji, M.L. Wang, S.Y. Zhong, and H.W. Wang, Multi-Scale Study of Microstructure Evolution in Hot Extruded Nano-Sized TiB2 Particle Reinforced Aluminum Composites, Mater. Des., 2017, 116, p 577–590 Z. Chen, G.A. Sun, Y. Wu, M.H. Mathon, A. Borbely, D. Chen, G. Ji, M.L. Wang, S.Y. Zhong, and H.W. Wang, Multi-Scale Study of Microstructure Evolution in Hot Extruded Nano-Sized TiB2 Particle Reinforced Aluminum Composites, Mater. Des., 2017, 116, p 577–590
44.
Zurück zum Zitat G. Moona, R.S. Walia, V. Rastogi, and R. Sharma, Aluminium Metal Matrix Composites: A Retrospective Investigation, Indian J. Pure Appl. Phys., 2018, 56, p 164–175 G. Moona, R.S. Walia, V. Rastogi, and R. Sharma, Aluminium Metal Matrix Composites: A Retrospective Investigation, Indian J. Pure Appl. Phys., 2018, 56, p 164–175
45.
Zurück zum Zitat A.S. Vivekananda and S.B. Prabu, Wear Behaviour of In Situ Al/TiB2 Composite: Influence of the Microstructural Instability, Tribol. Lett., 2018, 66, p 41 A.S. Vivekananda and S.B. Prabu, Wear Behaviour of In Situ Al/TiB2 Composite: Influence of the Microstructural Instability, Tribol. Lett., 2018, 66, p 41
46.
Zurück zum Zitat Y. Shimizu, T. Nishimura, and I. Matsushima, Corrosion Resistance of Al-Based Metal Matrix Composites, Mater. Sci. Eng. A, 1995, 198, p 113–118 Y. Shimizu, T. Nishimura, and I. Matsushima, Corrosion Resistance of Al-Based Metal Matrix Composites, Mater. Sci. Eng. A, 1995, 198, p 113–118
47.
Zurück zum Zitat A. Turnbull, Review of Corrosion Studies on Aluminum Metal Matrix Composites, Br. Corros. J., 1992, 27, p 27–35 A. Turnbull, Review of Corrosion Studies on Aluminum Metal Matrix Composites, Br. Corros. J., 1992, 27, p 27–35
48.
Zurück zum Zitat G.S.P. Kumar, R. Keshavamurthy, P. Kumari, and C. Dubey, Corrosion Behaviour of TiB2 Reinforced Aluminium Based In Situ Metal Matrix Composites, Perspect. Sci., 2016, 8, p 172–175 G.S.P. Kumar, R. Keshavamurthy, P. Kumari, and C. Dubey, Corrosion Behaviour of TiB2 Reinforced Aluminium Based In Situ Metal Matrix Composites, Perspect. Sci., 2016, 8, p 172–175
49.
Zurück zum Zitat H. Huo and S.C. Tjong, Corrosion Behavior of Al-Based Composites Containing In Situ TiB2, Al2O3 and Al3Ti Reinforcements in Aerated 3.5% Sodium Chloride Solution, Adv. Eng. Mater., 2007, 9, p 588–593 H. Huo and S.C. Tjong, Corrosion Behavior of Al-Based Composites Containing In Situ TiB2, Al2O3 and Al3Ti Reinforcements in Aerated 3.5% Sodium Chloride Solution, Adv. Eng. Mater., 2007, 9, p 588–593
50.
Zurück zum Zitat M. Trueba and S.P. Trasatti, The Repassivation Response from Single Cycle Anodic Polarization: The Case Study of a Sensitized Al-Mg Alloy, Electrochim. Acta, 2018, 259, p 492–499 M. Trueba and S.P. Trasatti, The Repassivation Response from Single Cycle Anodic Polarization: The Case Study of a Sensitized Al-Mg Alloy, Electrochim. Acta, 2018, 259, p 492–499
51.
Zurück zum Zitat D.S. Sekhawat, M. Chakraborty, and U.K. Chatterjee, Wear and Corrosion Behaviour of In-Situ Al-TiB2 Metal Matrix Composites, Mater. Sci. Forum, 2005, 475–479, p 449–452 D.S. Sekhawat, M. Chakraborty, and U.K. Chatterjee, Wear and Corrosion Behaviour of In-Situ Al-TiB2 Metal Matrix Composites, Mater. Sci. Forum, 2005, 475–479, p 449–452
52.
Zurück zum Zitat S. Agrawal, A.K. Ghose, and I. Chakrabarty, Effect of Rotary Electromagnetic Stirring During Solidification of In-Situ Al-TiB2 Composites, Mater. Des., 2017, 113, p 195–206 S. Agrawal, A.K. Ghose, and I. Chakrabarty, Effect of Rotary Electromagnetic Stirring During Solidification of In-Situ Al-TiB2 Composites, Mater. Des., 2017, 113, p 195–206
53.
Zurück zum Zitat B.S. Murty, S.A. Kori, and M. Chakraborty, Grain Refinement of Aluminium and Its Alloys by Heterogeneous Nucleation and Alloying, Int. Mater. Rev., 2002, 47, p 3–29 B.S. Murty, S.A. Kori, and M. Chakraborty, Grain Refinement of Aluminium and Its Alloys by Heterogeneous Nucleation and Alloying, Int. Mater. Rev., 2002, 47, p 3–29
54.
Zurück zum Zitat B. Pourbahari, H. Mirzadeh, and M. Emamy, Toward Unraveling the Effects of Intermetallic Compounds on the Microstructure and Mechanical Properties of Mg-Gd-Al-Zn Magnesium Alloys in the As-Cast, Homogenized, and Extruded Conditions, Mater. Sci. Eng. A, 2017, 680, p 39–46 B. Pourbahari, H. Mirzadeh, and M. Emamy, Toward Unraveling the Effects of Intermetallic Compounds on the Microstructure and Mechanical Properties of Mg-Gd-Al-Zn Magnesium Alloys in the As-Cast, Homogenized, and Extruded Conditions, Mater. Sci. Eng. A, 2017, 680, p 39–46
55.
Zurück zum Zitat D.A. Zhemchuzhnikova, M.A. Lebyodkin, T.A. Lebedkina, and R.O. Kaibyshev, Unusual Behavior of the Portevin–Le Chatelier Effect in an AlMg Alloy Containing Precipitates, Mater. Sci. Eng. A, 2015, 639, p 37–41 D.A. Zhemchuzhnikova, M.A. Lebyodkin, T.A. Lebedkina, and R.O. Kaibyshev, Unusual Behavior of the Portevin–Le Chatelier Effect in an AlMg Alloy Containing Precipitates, Mater. Sci. Eng. A, 2015, 639, p 37–41
56.
Zurück zum Zitat K.L. Kendig and D.B. Miracle, Strengthening Mechanisms of an Al-Mg-Sc-Zr Alloy, Acta Mater., 2002, 50, p 4165–4175 K.L. Kendig and D.B. Miracle, Strengthening Mechanisms of an Al-Mg-Sc-Zr Alloy, Acta Mater., 2002, 50, p 4165–4175
57.
Zurück zum Zitat L. Lu, M.O. Lai, and F.L. Chen, Al-4 wt.% Cu Composite reinforced with In Situ TiB2 Particles, Acta Mater., 1997, 45, p 4297–4309 L. Lu, M.O. Lai, and F.L. Chen, Al-4 wt.% Cu Composite reinforced with In Situ TiB2 Particles, Acta Mater., 1997, 45, p 4297–4309
58.
Zurück zum Zitat M. Naghizadeh and H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work- Hardening Behavior of AISI, 304 Austenitic Stainless Steel, Steel Res. Int., 2019, 90, p 1900153 M. Naghizadeh and H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work- Hardening Behavior of AISI, 304 Austenitic Stainless Steel, Steel Res. Int., 2019, 90, p 1900153
59.
Zurück zum Zitat M. Trueba and S.P. Trasatti, Study of Al Alloy Corrosion in Neutral NaCl by the Pitting Scan Technique, Mater. Chem. Phys., 2010, 121, p 523–533 M. Trueba and S.P. Trasatti, Study of Al Alloy Corrosion in Neutral NaCl by the Pitting Scan Technique, Mater. Chem. Phys., 2010, 121, p 523–533
60.
Zurück zum Zitat H.H. Sun, D. Chen, X.F. Li, N.H. Ma, and H.W. Wang, Electrochemical Corrosion Behavior of Al-Si Alloy Composites Reinforced with In Situ TiB2 Particulate, Mater. Corros., 2009, 60, p 419–423 H.H. Sun, D. Chen, X.F. Li, N.H. Ma, and H.W. Wang, Electrochemical Corrosion Behavior of Al-Si Alloy Composites Reinforced with In Situ TiB2 Particulate, Mater. Corros., 2009, 60, p 419–423
Metadaten
Titel
Elucidating the Effect of TiB2 Volume Percentage on the Mechanical Properties and Corrosion Behavior of Al5083-TiB2 Composites
verfasst von
Alireza Jafari Pirlari
Massoud Emamy
Ahmad Ali Amadeh
Meysam Naghizadeh
Publikationsdatum
25.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04403-6

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Engineering and Performance 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.