Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2020

21.02.2020

Mechanism-Based Models for Predicting the Microstructure and Stress–Strain Response of Additively Manufactured Superalloy 718Plus

verfasst von: Kwai S. Chan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alloy 718Plus, commonly known as ATI 718Plus®, is a Ni-based superalloy that has been developed to exhibit a γ + γ′ microstructure with a higher high-temperature strength capability compared to Alloy 718. In addition to wrought products, Alloy 718Plus has also been processed by additively manufacturing processes via layer-by-layer deposition. Additively manufactured (AM) 718Plus is typically heat-treated using multiple steps in order to provide an optimized microstructure and desired mechanical properties. In this article, mechanism-based heat treatment and constitutive models were developed for Alloy 718Plus. In particular, solution treatment and aging models were developed for predicting the grain size and the size, number density, and volume fraction of δ, secondary γ′, and tertiary γ′ precipitates in the microstructure. This microstructural information was then utilized in conjunction with a physics-based constitutive model, called MicroROM, to predict the stress–strain response of Alloy 718Plus. The predictive capabilities of the heat treatment models, named HTM718Plus, and the constitutive model (MicroROM) were first benchmarked against literature data of ATI 718Plus. Subsequently, the heat treatment models and constitutive model were applied to predict the microstructure and tensile response of AM 718Plus heat-treated by a multi-step procedure with good agreement between computed results and experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.-D. Cao, Solidification and Solid State Phase Transformation of Allvac® 718Plus™ Alloy, in Superalloys 718, 625, 706 and Derivatives 2005, ed. by E. A. Loria (The Minerals, Metals & Materials Society, Warrendale, PA, 2005), pp. 165–177. W.-D. Cao, Solidification and Solid State Phase Transformation of Allvac® 718Plus™ Alloy, in Superalloys 718, 625, 706 and Derivatives 2005, ed. by E. A. Loria (The Minerals, Metals & Materials Society, Warrendale, PA, 2005), pp. 165–177.
2.
Zurück zum Zitat R. Radis, G.A. Zickler, M. Stockinger, C. Sommitsch, and E. Kozeschnik, Interaction of the Precipitation Kinetics of β and & γ′ Phases in Nickel-Base Superalloy ATI, Allvac® 718Plus®, Mater. Sci. Forum, 2010, 638–642, p 2712–2717CrossRef R. Radis, G.A. Zickler, M. Stockinger, C. Sommitsch, and E. Kozeschnik, Interaction of the Precipitation Kinetics of β and & γ′ Phases in Nickel-Base Superalloy ATI, Allvac® 718Plus®, Mater. Sci. Forum, 2010, 638–642, p 2712–2717CrossRef
3.
Zurück zum Zitat X. Xie, G. Wang, J. Dong, C. Xu, W.-D. Cao, and R. Kennedy, Structure Stability Study on a Newly Developed Nickel-base Superalloy—Allvac® 718Plus™, in Superalloys 718, 625,706, and Derivatives 2005, ed. by E. A. Loria (The Minerals, Metals & Materials Society, Warrendale, PA, 2005), pp. 179–191 X. Xie, G. Wang, J. Dong, C. Xu, W.-D. Cao, and R. Kennedy, Structure Stability Study on a Newly Developed Nickel-base Superalloy—Allvac® 718Plus™, in Superalloys 718, 625,706, and Derivatives 2005, ed. by E. A. Loria (The Minerals, Metals & Materials Society, Warrendale, PA, 2005), pp. 179–191
4.
Zurück zum Zitat N.O. Villalon, O. Covarrubias, and R. Colas, Heat Treating of a 718Plus Superalloy, Mater. Perform. Charact., 2013, 2, p 153–162 N.O. Villalon, O. Covarrubias, and R. Colas, Heat Treating of a 718Plus Superalloy, Mater. Perform. Charact., 2013, 2, p 153–162
5.
Zurück zum Zitat A. Reshetov, O. Bylya, N. Stefani, M. Rosochowska, and P. Blackwell. An Approach to Microstructure Modelling in Nickel Based Superalloys. Superalloys 2016, in Proceedings of the 13th Symposium on Superalloys, M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin Ed. The Minerals, Metals & Materials Society, Warrendale, PA, p. 531–538 A. Reshetov, O. Bylya, N. Stefani, M. Rosochowska, and P. Blackwell. An Approach to Microstructure Modelling in Nickel Based Superalloys. Superalloys 2016, in Proceedings of the 13th Symposium on Superalloys, M. Hardy, E. Huron, U. Glatzel, B. Griffin, B. Lewis, C. Rae, V. Seetharaman, and S. Tin Ed. The Minerals, Metals & Materials Society, Warrendale, PA, p. 531–538
6.
Zurück zum Zitat C. Sommitsch, D. Huber, F. Ingelman-Sundberg, S. Mitsche, M. Stockinger, and B. Buchmayr, Recrystallization and Grain Growth in the Nickel-Based Superalloy Allvac 78Plus, Int. J. Mater. Res., 2009, 100, p 1088–1098CrossRef C. Sommitsch, D. Huber, F. Ingelman-Sundberg, S. Mitsche, M. Stockinger, and B. Buchmayr, Recrystallization and Grain Growth in the Nickel-Based Superalloy Allvac 78Plus, Int. J. Mater. Res., 2009, 100, p 1088–1098CrossRef
7.
Zurück zum Zitat G.A. Zickler, R. Schnitzer, R. Radis, R. Hochfellner, R. Schweins, M. Stockinger, and H. Leitner, Microstructure and Mechanical Properties of the Superalloys ATI, Allvac® 718Plus™, Mater. Sci. Eng. A, 2009, 523, p 295–303CrossRef G.A. Zickler, R. Schnitzer, R. Radis, R. Hochfellner, R. Schweins, M. Stockinger, and H. Leitner, Microstructure and Mechanical Properties of the Superalloys ATI, Allvac® 718Plus™, Mater. Sci. Eng. A, 2009, 523, p 295–303CrossRef
8.
Zurück zum Zitat L. Whitmore, H. Leitner, E. Povoden-Karadeniz, R. Radis, and M. Stockinger, Transmission Electron Microscopy of Single and Double Aged 718Plus Superalloy, Mat. Sci. Eng. A, 2012, A534, p 413–423CrossRef L. Whitmore, H. Leitner, E. Povoden-Karadeniz, R. Radis, and M. Stockinger, Transmission Electron Microscopy of Single and Double Aged 718Plus Superalloy, Mat. Sci. Eng. A, 2012, A534, p 413–423CrossRef
9.
Zurück zum Zitat M.R. Ahmadi, L. Whitmore, E. Povoden-Karadeniz, M. Stockinger, A. Falahati, and E. Kozeschnik, Simulation of Yield Strength in Allvac® 718Plus™, Adv. Mater. Res., 2014, 922, p 7–12CrossRef M.R. Ahmadi, L. Whitmore, E. Povoden-Karadeniz, M. Stockinger, A. Falahati, and E. Kozeschnik, Simulation of Yield Strength in Allvac® 718Plus™, Adv. Mater. Res., 2014, 922, p 7–12CrossRef
10.
Zurück zum Zitat J. Svoboda, P.D. Fischer, P. Fratzl, and E. Kozeschnik, Modelling of Kinetics in Multi-Component Multi-Phase Systems with Spherical Precipitates: I: Theory, Mater. Sci. Eng. A, 2004, A385, p 166–174 J. Svoboda, P.D. Fischer, P. Fratzl, and E. Kozeschnik, Modelling of Kinetics in Multi-Component Multi-Phase Systems with Spherical Precipitates: I: Theory, Mater. Sci. Eng. A, 2004, A385, p 166–174
11.
Zurück zum Zitat E. Kozeschnik, J. Svoboda, P. Fratzl, and F.D. Fischer, Modelling of Kinetics in Multi-Component Multi-Phase Systems with Spherical Precipitates: II: Numerical Solution and Application, Mater. Sci. Eng. A, 2004, A385, p 157–165 E. Kozeschnik, J. Svoboda, P. Fratzl, and F.D. Fischer, Modelling of Kinetics in Multi-Component Multi-Phase Systems with Spherical Precipitates: II: Numerical Solution and Application, Mater. Sci. Eng. A, 2004, A385, p 157–165
12.
Zurück zum Zitat E. Kozeschnik, J. Svoboda, and F.D. Fischer, Modified Equations for the Precipitation Kinetics of Complex Phases in Multi-Component Systems, CALPHAD, 2005, 28, p 379–382CrossRef E. Kozeschnik, J. Svoboda, and F.D. Fischer, Modified Equations for the Precipitation Kinetics of Complex Phases in Multi-Component Systems, CALPHAD, 2005, 28, p 379–382CrossRef
13.
Zurück zum Zitat R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys, Metall. Mater. Trans. A, 2009, 40A, p 1588–1603CrossRef R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys, Metall. Mater. Trans. A, 2009, 40A, p 1588–1603CrossRef
14.
Zurück zum Zitat T.A. Parthasarathy, S.I. Rao, and D.M. Dimiduk, A Fast Spreadsheet Model for the Yield Strength of Superalloys, Superalloys, 2004, 10, p 887–896CrossRef T.A. Parthasarathy, S.I. Rao, and D.M. Dimiduk, A Fast Spreadsheet Model for the Yield Strength of Superalloys, Superalloys, 2004, 10, p 887–896CrossRef
15.
Zurück zum Zitat K.S. Chan, MicroROM: A Physics-based Constitutive Model for Ni-based Superalloys, Metall. Mater. Trans. A, 2018, 49A, p 5353–5367CrossRef K.S. Chan, MicroROM: A Physics-based Constitutive Model for Ni-based Superalloys, Metall. Mater. Trans. A, 2018, 49A, p 5353–5367CrossRef
16.
Zurück zum Zitat T.P. Gabb, J. Telesman, A. Garg, P. Lin, V. Provenzanon, R. Heard, and H.M. Miller. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus™ Superalloy, in NASA/TM-2010-216935, NASA Glenn Research Center, Cleveland, OH T.P. Gabb, J. Telesman, A. Garg, P. Lin, V. Provenzanon, R. Heard, and H.M. Miller. Grain Boundary Engineering the Mechanical Properties of Allvac 718Plus™ Superalloy, in NASA/TM-2010-216935, NASA Glenn Research Center, Cleveland, OH
17.
Zurück zum Zitat B. Peterson, V. Krishnan, D. Brayshaw, R. Helmink, S. Oppenheimer, E. Ott, R. Benn, and M. Uchic. Castability of 718Plus® for Structural Gas Turbine Engine Components, AFRL-RX-WP-TP-2010-4162, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH B. Peterson, V. Krishnan, D. Brayshaw, R. Helmink, S. Oppenheimer, E. Ott, R. Benn, and M. Uchic. Castability of 718Plus® for Structural Gas Turbine Engine Components, AFRL-RX-WP-TP-2010-4162, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH
18.
Zurück zum Zitat G. Asala, A.K. Khan, J. Andersson, and O.A. Ojo, Microstructural Analyses of ATI, 718Plus® Produced by Wire-Arc Additive Manufacturing Process, Metall. Mater. Trans. A, 2017, 48A, p 4211–4228CrossRef G. Asala, A.K. Khan, J. Andersson, and O.A. Ojo, Microstructural Analyses of ATI, 718Plus® Produced by Wire-Arc Additive Manufacturing Process, Metall. Mater. Trans. A, 2017, 48A, p 4211–4228CrossRef
19.
Zurück zum Zitat Honeywell Aerospace Inc., DARPA Open Manufacturing Program Phase 3, Contract Number HR0011-12-C-0037, Tempe, AZ, 2018 Honeywell Aerospace Inc., DARPA Open Manufacturing Program Phase 3, Contract Number HR0011-12-C-0037, Tempe, AZ, 2018
20.
Zurück zum Zitat K.S. Chan and A. Peralta-Duran, A Methodology for Predicting Surface Crack Nucleation in Additively Manufactured Metallic Components, Metall. Mater. Trans. A, 2019, 50A, p 4378–4387CrossRef K.S. Chan and A. Peralta-Duran, A Methodology for Predicting Surface Crack Nucleation in Additively Manufactured Metallic Components, Metall. Mater. Trans. A, 2019, 50A, p 4378–4387CrossRef
21.
Zurück zum Zitat W.E. Frazier, Metal Additive Manufacturing: A Review, J. & Mate Eng. Perform., 2014, 23, p 1917–1928CrossRef W.E. Frazier, Metal Additive Manufacturing: A Review, J. & Mate Eng. Perform., 2014, 23, p 1917–1928CrossRef
22.
Zurück zum Zitat R.C. Benn and R. Salva. Additive Manufactured Inconel® Alloy 718, in 7th International Symposium On Superalloy 718 and Derivatives, E.A. Ott, J.R. Groh, A. Banik, IDempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G.P. Sjoberg, and A. Wusatowska-Sarnek Ed. The Minerals, Metals, & Materials Society, Warrendale, PA, 2010, p. 455–469 R.C. Benn and R. Salva. Additive Manufactured Inconel® Alloy 718, in 7th International Symposium On Superalloy 718 and Derivatives, E.A. Ott, J.R. Groh, A. Banik, IDempster, T.P. Gabb, R. Helmink, X. Liu, A. Mitchell, G.P. Sjoberg, and A. Wusatowska-Sarnek Ed. The Minerals, Metals, & Materials Society, Warrendale, PA, 2010, p. 455–469
23.
Zurück zum Zitat M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Computer Simulation of Grain Growth—I: Kinetics, Acta Mater., 1984, 32, p 783–791CrossRef M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni, Computer Simulation of Grain Growth—I: Kinetics, Acta Mater., 1984, 32, p 783–791CrossRef
24.
Zurück zum Zitat E.O. Hall, The Deformation and Ageing of Mild Steel: II, Characteristics of the Lüders Deformation, Proc. Phys. Soc., 1951, 64B(9), p 747CrossRef E.O. Hall, The Deformation and Ageing of Mild Steel: II, Characteristics of the Lüders Deformation, Proc. Phys. Soc., 1951, 64B(9), p 747CrossRef
25.
Zurück zum Zitat N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28 N.J. Petch, The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, 174, p 25–28
26.
Zurück zum Zitat ATI 718Plus Alloy Technical Data Sheet, Nl-417 Version 1, ATI Allvac, Monroe, NC, 2010 ATI 718Plus Alloy Technical Data Sheet, Nl-417 Version 1, ATI Allvac, Monroe, NC, 2010
27.
Zurück zum Zitat T.P. Gabb, J. Telesman, A. Banik, and E. McDevitt. Use of Slow Strain Rate Tensile Testing to Assess the Ability of Several Superalloys to Resist Environmentally-Assisted Intergranular Cracking, in 8th International Symposium On Superalloy 718 and Derivatives, E. Ott, A. Banik, X. Liu, I. Dempster, K. Heck, J. Andersson. J. Groh, T. Gabb, R. Helmink, and A. Wusatowska-Darnek Ed., The Minerals, Metals & Materials Society, Warrendale, PA, 2014, p. 697–712 T.P. Gabb, J. Telesman, A. Banik, and E. McDevitt. Use of Slow Strain Rate Tensile Testing to Assess the Ability of Several Superalloys to Resist Environmentally-Assisted Intergranular Cracking, in 8th International Symposium On Superalloy 718 and Derivatives, E. Ott, A. Banik, X. Liu, I. Dempster, K. Heck, J. Andersson. J. Groh, T. Gabb, R. Helmink, and A. Wusatowska-Darnek Ed., The Minerals, Metals & Materials Society, Warrendale, PA, 2014, p. 697–712
28.
Zurück zum Zitat L.A. Gypen and A. Deruyttere, Multi-component Solid Solution Hardening, J Mater. Sci., 1977, 12, p 1028–1033CrossRef L.A. Gypen and A. Deruyttere, Multi-component Solid Solution Hardening, J Mater. Sci., 1977, 12, p 1028–1033CrossRef
29.
Zurück zum Zitat DARWIN® User’s Guide. Southwest Research Institute, San Antonio, TX, 2013 DARWIN® User’s Guide. Southwest Research Institute, San Antonio, TX, 2013
30.
Zurück zum Zitat J. McFarland. Calibration and Uncertainty Analysis for a Temperature-Dependent Yield Strength Model of Additively Manufactured Alloy 718Plus. Presented at USACM Thematic Conference on Uncertainty Quantification in Computational Solid and Structural Materials Modeling, January 17–19, 2019, Baltimore, MD J. McFarland. Calibration and Uncertainty Analysis for a Temperature-Dependent Yield Strength Model of Additively Manufactured Alloy 718Plus. Presented at USACM Thematic Conference on Uncertainty Quantification in Computational Solid and Structural Materials Modeling, January 17–19, 2019, Baltimore, MD
31.
Zurück zum Zitat T.P. Gabb, A. Garg, D.L. Ellis, K.M. O’Connor. Detailed Microstructural Characterization of the Disk Alloy ME3. NASA/TM-2004-213066, 2004, NASA Glenn Research Center, Cleveland, OH T.P. Gabb, A. Garg, D.L. Ellis, K.M. O’Connor. Detailed Microstructural Characterization of the Disk Alloy ME3. NASA/TM-2004-213066, 2004, NASA Glenn Research Center, Cleveland, OH
Metadaten
Titel
Mechanism-Based Models for Predicting the Microstructure and Stress–Strain Response of Additively Manufactured Superalloy 718Plus
verfasst von
Kwai S. Chan
Publikationsdatum
21.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04678-0

Weitere Artikel der Ausgabe 3/2020

Journal of Materials Engineering and Performance 3/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.