Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2020

20.05.2020

Selection of Process Parameters for Near-Net Shape Deposition in Wire Arc Additive Manufacturing by Genetic Algorithm

verfasst von: Ashish Kumar, Kuntal Maji

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In wire arc additive manufacturing (WAAM), deposition of multiple beads in multiple layers is required for fabricating any component. This article presents ways to optimize the selection of parameters for near-net shape deposition to minimize void and excess material in WAAM by GA. Initially single-bead geometry model was developed utilizing response surface methodology and experiments were conducted utilizing Box-Behenken design of experiments for deposition of 304L stainless steel in WAAM. Bead geometry parameters, i.e., bead width, bead height and bead cross-sectional area, etc., were expressed in terms of the process parameters like voltage, wire feed rate, torch speed and gas flow rate. Optimal processing conditions and deposition planning were determined utilizing a GA to minimize void and maximize material yield. The proposed approach was validated through deposition of three shapes, i.e., slice, wall and block. The three shapes fabricated with optimal parameters were found to have minimum void and maximum material yield. It has been revealed that optimal bead sizes and degree of overlapping are different for fabricating different geometries. Mechanical testing and metallurgical characterization of the deposited materials exhibited comparable properties of the deposited material to that of the base material. Moreover, double wire feed deposition was seen to deliver higher deposition rate and superior mechanical properties of the deposited material compared to the single wire feed deposition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Suryakumar, K.P. Karunakaran, A. Bernard, N. Raghavender, and D. Sharma, Weld Bead Modeling and Process Optimization in Hybrid Layered Manufacturing, Comput. Aided Des., 2011, 43, p 331–344CrossRef S. Suryakumar, K.P. Karunakaran, A. Bernard, N. Raghavender, and D. Sharma, Weld Bead Modeling and Process Optimization in Hybrid Layered Manufacturing, Comput. Aided Des., 2011, 43, p 331–344CrossRef
2.
Zurück zum Zitat Y. Cao, S. Zhu, X. Liang, and W. Wang, Overlapping Model of Beads and Curve Fitting of Bead Section For Rapid Manufacturing By Robotic MAG Welding Process, Robotics Comput. Integr. Manuf., 2011, 27, p 641–645CrossRef Y. Cao, S. Zhu, X. Liang, and W. Wang, Overlapping Model of Beads and Curve Fitting of Bead Section For Rapid Manufacturing By Robotic MAG Welding Process, Robotics Comput. Integr. Manuf., 2011, 27, p 641–645CrossRef
3.
Zurück zum Zitat J. Xiong, G. Zhang, H. Gao, and L. Wu, Modeling of Bead Section Profile and Overlapping Beads with Experimental Validation for Robotic GMAW-Based Rapid Manufacturing, Robotics Comput. Integr. Manuf., 2012, 29, p 417–423CrossRef J. Xiong, G. Zhang, H. Gao, and L. Wu, Modeling of Bead Section Profile and Overlapping Beads with Experimental Validation for Robotic GMAW-Based Rapid Manufacturing, Robotics Comput. Integr. Manuf., 2012, 29, p 417–423CrossRef
4.
Zurück zum Zitat J. Xiong, G. Zhang, Z. Qiu, and Y. Li, Vision-Sensing and Bead Width Control of a Single-Bead Multi-Layer Part: Material and Energy Savings in GMAW-Based Rapid Manufacturing, J. Clean. Prod., 2013, 41, p 82–88CrossRef J. Xiong, G. Zhang, Z. Qiu, and Y. Li, Vision-Sensing and Bead Width Control of a Single-Bead Multi-Layer Part: Material and Energy Savings in GMAW-Based Rapid Manufacturing, J. Clean. Prod., 2013, 41, p 82–88CrossRef
5.
Zurück zum Zitat J. Xiong, G. Zhang, J. Hu, and L. Wu, Bead Geometry Prediction for Robotic GMAW-Based Rapid Manufacturing Through a Neural Network and a Second-Order Regression Analysis, J. Intell. Manuf., 2014, 25, p 157–163CrossRef J. Xiong, G. Zhang, J. Hu, and L. Wu, Bead Geometry Prediction for Robotic GMAW-Based Rapid Manufacturing Through a Neural Network and a Second-Order Regression Analysis, J. Intell. Manuf., 2014, 25, p 157–163CrossRef
6.
Zurück zum Zitat W.E. Frazier, Metal Additive Manufacturing: a Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928CrossRef W.E. Frazier, Metal Additive Manufacturing: a Review, J. Mater. Eng. Perform., 2014, 23, p 1917–1928CrossRef
7.
Zurück zum Zitat D. Ding, Z. Pan, D. Cuiuri, and H. Li, A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing, Robotics Comput. Integr. Manuf., 2015, 31, p 101–110CrossRef D. Ding, Z. Pan, D. Cuiuri, and H. Li, A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing, Robotics Comput. Integr. Manuf., 2015, 31, p 101–110CrossRef
8.
Zurück zum Zitat D. Ding, Z. Pan, D. Cuiuri, and H. Li, A Practical Path Planning Methodology for Wire and Arc Additive Manufacturing of Thin-Walled Structures, Robotics Comput Integr. Manuf., 2015, 34, p 8–19CrossRef D. Ding, Z. Pan, D. Cuiuri, and H. Li, A Practical Path Planning Methodology for Wire and Arc Additive Manufacturing of Thin-Walled Structures, Robotics Comput Integr. Manuf., 2015, 34, p 8–19CrossRef
9.
Zurück zum Zitat D. Ding, Z. Pan, D. Cuiuri, H. Li, and N. Larkin, Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System from CAD to Finished Part, Comput. Aided Des., 2016, 73, p 66–75CrossRef D. Ding, Z. Pan, D. Cuiuri, H. Li, and N. Larkin, Towards an Automated Robotic Arc-Welding-Based Additive Manufacturing System from CAD to Finished Part, Comput. Aided Des., 2016, 73, p 66–75CrossRef
10.
Zurück zum Zitat F. Youheng, W. Guilain, Z. Haion, and L. Liy, Optimization of Surface Appearance for Wire and Arc Additive Manufacturing of Bainite Steel, Int. J. Adv. Manuf. Technol., 2017, 91, p 301–313CrossRef F. Youheng, W. Guilain, Z. Haion, and L. Liy, Optimization of Surface Appearance for Wire and Arc Additive Manufacturing of Bainite Steel, Int. J. Adv. Manuf. Technol., 2017, 91, p 301–313CrossRef
11.
Zurück zum Zitat S. Srivastava and R.K. Garg, Process Parameter Optimization of Gas Metal Arc Welding on IS: 2062 Mild Steel Using Response Surface Methodology, J. Manuf. Process., 2017, 25, p 296–305CrossRef S. Srivastava and R.K. Garg, Process Parameter Optimization of Gas Metal Arc Welding on IS: 2062 Mild Steel Using Response Surface Methodology, J. Manuf. Process., 2017, 25, p 296–305CrossRef
12.
Zurück zum Zitat Y. Li, Y. Sun, Q. Han, G. Zhang, and I. Horvath, Enhanced Beads Overlapping Model for Wire and Arc Additive Manufacturing of Multi-Layer Multi-Bead Metallic Parts, J. Mater. Process. Technol., 2018, 252, p 838–848CrossRef Y. Li, Y. Sun, Q. Han, G. Zhang, and I. Horvath, Enhanced Beads Overlapping Model for Wire and Arc Additive Manufacturing of Multi-Layer Multi-Bead Metallic Parts, J. Mater. Process. Technol., 2018, 252, p 838–848CrossRef
13.
Zurück zum Zitat X. Lu, Y.F. Zhou, X.L. Xing, L.Y. Shao, Q.X. Yang, and S.Y. Gao, Open-Source Wire and Arc Additive Manufacturing System: Formability, Microstructures, And Mechanical Properties, Int. J. Adv. Manuf. Technol., 2017, 93, p 2145–2154CrossRef X. Lu, Y.F. Zhou, X.L. Xing, L.Y. Shao, Q.X. Yang, and S.Y. Gao, Open-Source Wire and Arc Additive Manufacturing System: Formability, Microstructures, And Mechanical Properties, Int. J. Adv. Manuf. Technol., 2017, 93, p 2145–2154CrossRef
14.
Zurück zum Zitat C.V. Haden, G. Zeng, F.M. Carter, C. Ruhl, B.A. Krick, and D.G. Harlow, Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties, Addit Manuf., 2017, 16, p 115–123 C.V. Haden, G. Zeng, F.M. Carter, C. Ruhl, B.A. Krick, and D.G. Harlow, Wire and Arc Additive Manufactured Steel: Tensile and Wear Properties, Addit Manuf., 2017, 16, p 115–123
15.
Zurück zum Zitat J. Gordon, J. Hochhalter, C. Haden, and D.G. Harlow, Enhancement in Fatigue Performance of Metastable Austenitic Stainless Steel Through Directed Energy Deposition Additive Manufacturing, Mater. Des., 2019, 168, p 107630CrossRef J. Gordon, J. Hochhalter, C. Haden, and D.G. Harlow, Enhancement in Fatigue Performance of Metastable Austenitic Stainless Steel Through Directed Energy Deposition Additive Manufacturing, Mater. Des., 2019, 168, p 107630CrossRef
16.
Zurück zum Zitat Z. Li, Y. Cui, J. Wang, C. Liu, J. Wang, T. Xu, T. Lu, H. Zhang, J. Lu, S. Ma, H. Fan, and S. Tang, Characterization of Microstructure And Mechanical Properties Of Stellite 6 Part Fabricated by Wire Arc Additive Manufacturing, Metals, 2019, 9(4), p 474CrossRef Z. Li, Y. Cui, J. Wang, C. Liu, J. Wang, T. Xu, T. Lu, H. Zhang, J. Lu, S. Ma, H. Fan, and S. Tang, Characterization of Microstructure And Mechanical Properties Of Stellite 6 Part Fabricated by Wire Arc Additive Manufacturing, Metals, 2019, 9(4), p 474CrossRef
17.
Zurück zum Zitat D. Samantaray, V. Kumar, A.K. Bhaduri, and P. Dutta, Microstructural Evolution And Mechanical Properties of Type 304 L Stainless Steel Processed in Semi-Solid State, Int. J. Metall. Eng., 2013, 2(2), p 149–153 D. Samantaray, V. Kumar, A.K. Bhaduri, and P. Dutta, Microstructural Evolution And Mechanical Properties of Type 304 L Stainless Steel Processed in Semi-Solid State, Int. J. Metall. Eng., 2013, 2(2), p 149–153
18.
Zurück zum Zitat X. Chen, J. Li, Z. Huang, H. Wang, X. Cheng, and B. He, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng. A, 2017, 703, p 567–577CrossRef X. Chen, J. Li, Z. Huang, H. Wang, X. Cheng, and B. He, Microstructure and Mechanical Properties of the Austenitic Stainless Steel 316L Fabricated by Gas Metal Arc Additive Manufacturing, Mater. Sci. Eng. A, 2017, 703, p 567–577CrossRef
19.
Zurück zum Zitat X. Xu, J. Ding, S. Ganguly, C. Diao, and S. Williams, Preliminary Investigation of Building Strategies of Maraging Steel Bulk Material Using Wire + Arc Additive Manufacture, J. Mater. Eng. Perform., 2019, 28(2), p 594–600CrossRef X. Xu, J. Ding, S. Ganguly, C. Diao, and S. Williams, Preliminary Investigation of Building Strategies of Maraging Steel Bulk Material Using Wire + Arc Additive Manufacture, J. Mater. Eng. Perform., 2019, 28(2), p 594–600CrossRef
20.
Zurück zum Zitat X. Xing, G. Qin, Y. Zhou, H. Yu, L. Liu, L. Zhang, and Q. Yang, Microstructure Optimization and Cracking Control of Additive Manufactured Bainite Steel by Gas Metal Arc Welding Technology, J. Mater. Eng. Perform., 2019, 28, p 5138–5145CrossRef X. Xing, G. Qin, Y. Zhou, H. Yu, L. Liu, L. Zhang, and Q. Yang, Microstructure Optimization and Cracking Control of Additive Manufactured Bainite Steel by Gas Metal Arc Welding Technology, J. Mater. Eng. Perform., 2019, 28, p 5138–5145CrossRef
21.
Zurück zum Zitat M.A. Somashekara and S. Suryakumar, Studies on Dissimilar Twin-Wire Weld-Deposition for Additive Manufacturing Applications, Trans. Indian Inst. Met., 2017, 70(8), p 2123–2135CrossRef M.A. Somashekara and S. Suryakumar, Studies on Dissimilar Twin-Wire Weld-Deposition for Additive Manufacturing Applications, Trans. Indian Inst. Met., 2017, 70(8), p 2123–2135CrossRef
22.
Zurück zum Zitat Y. Feng, B. Zhan, J. He, and K. Wang, The Double-Wire Feed and Plasma Arc Additive Manufacturing Process for Deposition in Cr-Ni Stainless Steel, J. Mater. Process. Tech., 2018, 259, p 206–215CrossRef Y. Feng, B. Zhan, J. He, and K. Wang, The Double-Wire Feed and Plasma Arc Additive Manufacturing Process for Deposition in Cr-Ni Stainless Steel, J. Mater. Process. Tech., 2018, 259, p 206–215CrossRef
23.
Zurück zum Zitat F. Martina, J. Ding, S. Williams, A. Caballero, G. Pardal, and L. Quintino, Tandem Metal Inert Gas Process for High Productivity Wire Arc Additive Manufacturing in Stainless Steel, Addit. Manuf., 2019, 25, p 545–550 F. Martina, J. Ding, S. Williams, A. Caballero, G. Pardal, and L. Quintino, Tandem Metal Inert Gas Process for High Productivity Wire Arc Additive Manufacturing in Stainless Steel, Addit. Manuf., 2019, 25, p 545–550
24.
Zurück zum Zitat D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 2001 D.C. Montgomery, Design and Analysis of Experiments, Wiley, New York, 2001
25.
Zurück zum Zitat D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed., Addison-Wesley Professional, USA, 1989 D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed., Addison-Wesley Professional, USA, 1989
26.
Zurück zum Zitat K. Maji, D.K. Pratihar, and S. Patra, Modeling of Electrical Discharge Machining Process Using Regression Analysis, Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm, Int. J. Data Min. Model. Manag., 2010, 2(1), p 75–94 K. Maji, D.K. Pratihar, and S. Patra, Modeling of Electrical Discharge Machining Process Using Regression Analysis, Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm, Int. J. Data Min. Model. Manag., 2010, 2(1), p 75–94
27.
Zurück zum Zitat K. Maji, D.K. Pratihar, and A.K. Nath, Analysis of Pulsed Laser Bending of Sheet Metal Using Neural Networks and Neuro-Fuzzy System, IMechE Part B J. Eng. Manuf., 2014, 228(9), p 1015–1026CrossRef K. Maji, D.K. Pratihar, and A.K. Nath, Analysis of Pulsed Laser Bending of Sheet Metal Using Neural Networks and Neuro-Fuzzy System, IMechE Part B J. Eng. Manuf., 2014, 228(9), p 1015–1026CrossRef
Metadaten
Titel
Selection of Process Parameters for Near-Net Shape Deposition in Wire Arc Additive Manufacturing by Genetic Algorithm
verfasst von
Ashish Kumar
Kuntal Maji
Publikationsdatum
20.05.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04847-1

Weitere Artikel der Ausgabe 5/2020

Journal of Materials Engineering and Performance 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.