Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

28.05.2021

Enhanced Thermal Conductivity and Tensile Strength of Copper Matrix Composite with Few-Layer Graphene Nanoplates

verfasst von: Fei Long Jia, Kun Xia Wei, Wei Wei, Fu Qiang Chu, Qing Bo Du, Igor V. Alexandrov, Jing Hu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructure, thermal conductivity and tensile properties of copper foils are significantly affected by few-layer graphene nanoplates (FLGNPs) as reinforcement embedded into Cu matrix. In the present study, FLGNPs and Cu2+ were co-deposited on the Ti substrate by direct current (DC) electrodeposition to obtain flexible Cu-FLGNPs composites. The texture orientation, phase structure, surface morphology, interface between FLGNPs and Cu matrix of the Cu-FLGNPs composites were characterized. The results show that thermal conductivity and tensile properties of the Cu-FLGNPs composites were increased firstly and then decreased in the process of electrodeposition. Thermal conductivity of the Cu-FLGNPs composites was enhanced from 311 ± 9 W m−1 K−1 characteristic for Cu up to 444 ± 13 W m−1 K−1 when the Gr content was 0.8 g L−1 and the graphene defect density was 6.30×1010 cm−2. Tensile strength of the Cu-0.8FLGNPs composites was 397 MPa, which was improved by 34% compared to the Cu matrix counterparts. Furthermore, the modified thermal model was proposed to evaluate the difference between experimental and theoretical thermal conductivity. The thermal conductivity mechanism was mainly ascribed to graphene defects, electron scattering, phonon scattering and interfacial thermal resistance. The electrodeposition of the Cu-FLGNPs composites provides a feasible route for heat dissipation of electronic and thermal management devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Chu, X.H. Wang, F. Wang, Y.B. Li, D.J. Huang, H. Liu, W.L. Ma, F.X. Liu and H. Zhang, Largely Enhanced Thermal Conductivity of Graphene/Copper Composites with Highly Aligned Graphene Network, Carbon, 2018, 127, p p102-112.CrossRef K. Chu, X.H. Wang, F. Wang, Y.B. Li, D.J. Huang, H. Liu, W.L. Ma, F.X. Liu and H. Zhang, Largely Enhanced Thermal Conductivity of Graphene/Copper Composites with Highly Aligned Graphene Network, Carbon, 2018, 127, p p102-112.CrossRef
2.
Zurück zum Zitat C. Zweben, Advances in Composite Materials for Thermal Management in Electronic Packaging, JOM, 1998, 50, p p47-51.CrossRef C. Zweben, Advances in Composite Materials for Thermal Management in Electronic Packaging, JOM, 1998, 50, p p47-51.CrossRef
3.
Zurück zum Zitat C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p p1-7. C.L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao and G. Sundararajan, A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness, Sci. Rep., 2014, 4, p p1-7.
4.
Zurück zum Zitat Z.G. Zhang, Y.Y. Sheng, X.W. Xu and W. Li, Microstructural Features and Mechanical Properties of in Situ Formed ZrB2/Cu Composites, Adv. Eng. Mater., 2015, 17, p p1338-1343.CrossRef Z.G. Zhang, Y.Y. Sheng, X.W. Xu and W. Li, Microstructural Features and Mechanical Properties of in Situ Formed ZrB2/Cu Composites, Adv. Eng. Mater., 2015, 17, p p1338-1343.CrossRef
5.
Zurück zum Zitat Z. Wang, X. Cai and C. Yang, Improving Strength and High Electrical Conductivity of Multi-Walled Carbon Nanotubes/Copper Composites Fabricated by Electrodeposition and Powder Metallurgy, J. Alloys Compd., 2018, 735, p p905-913.CrossRef Z. Wang, X. Cai and C. Yang, Improving Strength and High Electrical Conductivity of Multi-Walled Carbon Nanotubes/Copper Composites Fabricated by Electrodeposition and Powder Metallurgy, J. Alloys Compd., 2018, 735, p p905-913.CrossRef
6.
Zurück zum Zitat A. Simoncini, V. Tagliaferri and N. Ucciardello, High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets, Materials, 2017, 10, p p1226.CrossRef A. Simoncini, V. Tagliaferri and N. Ucciardello, High Thermal Conductivity of Copper Matrix Composite Coatings with Highly-Aligned Graphite Nanoplatelets, Materials, 2017, 10, p p1226.CrossRef
7.
Zurück zum Zitat X. Gao, H.Y. Yue, E.J. Guo, X.Y. Lin, L.H. Yao and B. Wang, Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites, Powder Technol., 2016, 301, p p601-607.CrossRef X. Gao, H.Y. Yue, E.J. Guo, X.Y. Lin, L.H. Yao and B. Wang, Mechanical Properties and Thermal Conductivity of Graphene Reinforced Copper Matrix Composites, Powder Technol., 2016, 301, p p601-607.CrossRef
8.
Zurück zum Zitat A.K. Geim, Graphene: Status and Prospects, Science, 2009, 324, p p1530-1534.CrossRef A.K. Geim, Graphene: Status and Prospects, Science, 2009, 324, p p1530-1534.CrossRef
9.
Zurück zum Zitat Y.P. Ren and G.X. Cao, Effect of Geometrical Defects on the Tensile Properties of Graphene, Carbon, 2016, 103, p p125-133.CrossRef Y.P. Ren and G.X. Cao, Effect of Geometrical Defects on the Tensile Properties of Graphene, Carbon, 2016, 103, p p125-133.CrossRef
10.
Zurück zum Zitat P. Liu, C.X. Yan, Z.C. Ling, E.F. Zhu and Q.N. Shi, Effect of Graphene Content on the Mechanical and Electrical Properties of Graphene-reinforced Copper Matrix Composites, Mater. Rep., 2017, 31, p p286-291. P. Liu, C.X. Yan, Z.C. Ling, E.F. Zhu and Q.N. Shi, Effect of Graphene Content on the Mechanical and Electrical Properties of Graphene-reinforced Copper Matrix Composites, Mater. Rep., 2017, 31, p p286-291.
11.
Zurück zum Zitat W.J. Kim, T.J. Lee and S.H. Han, Multi-Layer Graphene/Copper Composites: Preparation Using High-Ratio Differential Speed Rolling, Microstructure and Mechanical Properties, Carbon, 2014, 69, p p55-65.CrossRef W.J. Kim, T.J. Lee and S.H. Han, Multi-Layer Graphene/Copper Composites: Preparation Using High-Ratio Differential Speed Rolling, Microstructure and Mechanical Properties, Carbon, 2014, 69, p p55-65.CrossRef
12.
Zurück zum Zitat P. Goli, H. Ning, X.S. Li, C.Y. Lu, K.S. Novoselov and A.A. Balandin, Thermal Properties of Graphene–Copper–Graphene Heterogeneous Films, Nano Lett., 2014, 14, p p1497-1503.CrossRef P. Goli, H. Ning, X.S. Li, C.Y. Lu, K.S. Novoselov and A.A. Balandin, Thermal Properties of Graphene–Copper–Graphene Heterogeneous Films, Nano Lett., 2014, 14, p p1497-1503.CrossRef
13.
Zurück zum Zitat X.Y. Zhao, J.C. Tang, F.X. Yu and N. Ye, Preparation of Graphene Nanoplatelets Reinforcing Copper Matrix Composites by Electrochemical Deposition, J. Alloys Compd., 2018, 766, p p266-273.CrossRef X.Y. Zhao, J.C. Tang, F.X. Yu and N. Ye, Preparation of Graphene Nanoplatelets Reinforcing Copper Matrix Composites by Electrochemical Deposition, J. Alloys Compd., 2018, 766, p p266-273.CrossRef
14.
Zurück zum Zitat X.H. Li, S.J. Yan, Q.H. Hong, S.Z. Zhao and X. Chen, Influence of Graphene Content on Properties of Cu Matrix Composites, J. Mater. Eng., 2019, 47, p p11-17. X.H. Li, S.J. Yan, Q.H. Hong, S.Z. Zhao and X. Chen, Influence of Graphene Content on Properties of Cu Matrix Composites, J. Mater. Eng., 2019, 47, p p11-17.
15.
Zurück zum Zitat Z. Barani, A. Mohammadzadeh, A. Geremew, C.Y. Huang, D. Coleman, L. Mangolini, F. Kargar and A.A. Balandin, Thermal Properties of the Binary-Filler Hybrid Composites with Graphene and Copper Nanoparticles, Adv. Funct. Mater., 2019, 30, p 1904008.CrossRef Z. Barani, A. Mohammadzadeh, A. Geremew, C.Y. Huang, D. Coleman, L. Mangolini, F. Kargar and A.A. Balandin, Thermal Properties of the Binary-Filler Hybrid Composites with Graphene and Copper Nanoparticles, Adv. Funct. Mater., 2019, 30, p 1904008.CrossRef
16.
Zurück zum Zitat Q.H. Hong, S.J. Yan, C. Yang, X.Y. Zhang and S.L. Dai, Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites, J. Mater. Eng., 2016, 44, p p1-7. Q.H. Hong, S.J. Yan, C. Yang, X.Y. Zhang and S.L. Dai, Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites, J. Mater. Eng., 2016, 44, p p1-7.
17.
Zurück zum Zitat J. Wang, X. Zhang, N.Q. Zhao and C.N. He, In Situ Synthesis of Copper-Modified Graphene-Reinforced Aluminum Nanocomposites with Balanced Strength and Ductility, J. Mater. Sci., 2019, 54, p p5498-5512.CrossRef J. Wang, X. Zhang, N.Q. Zhao and C.N. He, In Situ Synthesis of Copper-Modified Graphene-Reinforced Aluminum Nanocomposites with Balanced Strength and Ductility, J. Mater. Sci., 2019, 54, p p5498-5512.CrossRef
18.
Zurück zum Zitat X. Cai, Fundamentals of Materials Science and Engineering, Shanghai Jiao Tong University Press, Shanghai, 2010. X. Cai, Fundamentals of Materials Science and Engineering, Shanghai Jiao Tong University Press, Shanghai, 2010.
19.
Zurück zum Zitat D.D. Zhang and Z.J. Zhan, Strengthening Effect of Graphene Derivatives in Copper Matrix Composites, J. Alloys Compd., 2016, 654, p p226-233.CrossRef D.D. Zhang and Z.J. Zhan, Strengthening Effect of Graphene Derivatives in Copper Matrix Composites, J. Alloys Compd., 2016, 654, p p226-233.CrossRef
20.
Zurück zum Zitat F.Y. Chen, J.M. Ying, Y.F. Wang, S.Y. Du, Z.P. Liu and Q. Huang, Effects of Graphene Content on the Microstructure and Properties of Copper Matrix Composites, Carbon, 2016, 96, p p836-842.CrossRef F.Y. Chen, J.M. Ying, Y.F. Wang, S.Y. Du, Z.P. Liu and Q. Huang, Effects of Graphene Content on the Microstructure and Properties of Copper Matrix Composites, Carbon, 2016, 96, p p836-842.CrossRef
21.
Zurück zum Zitat Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions during Annealing, Acta Mater., 2004, 52, p p4589-4599.CrossRef Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions during Annealing, Acta Mater., 2004, 52, p p4589-4599.CrossRef
22.
Zurück zum Zitat S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by Some X-ray Diffraction Methods, ISIJ Int., 2010, 50, p p875-882.CrossRef S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda and S. Ogata, Comparison of the Dislocation Density in Martensitic Steels Evaluated by Some X-ray Diffraction Methods, ISIJ Int., 2010, 50, p p875-882.CrossRef
23.
Zurück zum Zitat A. Saboori, S.K. Moheimani, M. Pavese, C. Badini and P. Fino, New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications, Metals, 2016, 7, p p536.CrossRef A. Saboori, S.K. Moheimani, M. Pavese, C. Badini and P. Fino, New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications, Metals, 2016, 7, p p536.CrossRef
24.
Zurück zum Zitat K. Jagannadham, Volume Fraction of Graphene Platelets in Copper-Graphene Composites, Metall. Mater. Trans. A, 2013, 44, p p552-559.CrossRef K. Jagannadham, Volume Fraction of Graphene Platelets in Copper-Graphene Composites, Metall. Mater. Trans. A, 2013, 44, p p552-559.CrossRef
25.
Zurück zum Zitat I. Firkowska, A. Boden, B. Boerner and S. Reich, The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites, Nano Lett., 2015, 15, p p4745-4751.CrossRef I. Firkowska, A. Boden, B. Boerner and S. Reich, The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites, Nano Lett., 2015, 15, p p4745-4751.CrossRef
26.
Zurück zum Zitat H.G. Zhu and T.C. Wang, The Fundamental Principles of Composites, Publishing House of Electronics Industry, Beijing, 2018. H.G. Zhu and T.C. Wang, The Fundamental Principles of Composites, Publishing House of Electronics Industry, Beijing, 2018.
27.
Zurück zum Zitat M.A. Rafiee, J. Rafiee, Z. Wang, H.H. Song, Z.Z. Yu and N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, 2009, 3, p p3884-3890.CrossRef M.A. Rafiee, J. Rafiee, Z. Wang, H.H. Song, Z.Z. Yu and N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, 2009, 3, p p3884-3890.CrossRef
28.
Zurück zum Zitat K. Jagannadham, Electrical Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets, J. Vac. Sci. Technol. B, 2012, 30, p 03D109.CrossRef K. Jagannadham, Electrical Conductivity of Copper-Graphene Composite Films Synthesized by Electrochemical Deposition with Exfoliated Graphene Platelets, J. Vac. Sci. Technol. B, 2012, 30, p 03D109.CrossRef
29.
Zurück zum Zitat D.L. Nika, S. Ghosh, E.P. Pokatilov and A.A. Balandin, Lattice Thermal Conductivity of Graphene Flakes: Comparison with Bulk Graphite, Appl. Phys. Lett., 2009, 94, p p203103.CrossRef D.L. Nika, S. Ghosh, E.P. Pokatilov and A.A. Balandin, Lattice Thermal Conductivity of Graphene Flakes: Comparison with Bulk Graphite, Appl. Phys. Lett., 2009, 94, p p203103.CrossRef
30.
Zurück zum Zitat F.L. Jia, K.X. Wei, W. Wei, Q.B. Du, I.V. Alexandrov and J. Hu, Effect of Sodium Dodecyl Sulfate on Mechanical Properties and Electrical Conductivity of Nanotwinned Copper, J. Mater. Eng. Perform., 2020, 29, p p897-904.CrossRef F.L. Jia, K.X. Wei, W. Wei, Q.B. Du, I.V. Alexandrov and J. Hu, Effect of Sodium Dodecyl Sulfate on Mechanical Properties and Electrical Conductivity of Nanotwinned Copper, J. Mater. Eng. Perform., 2020, 29, p p897-904.CrossRef
31.
Zurück zum Zitat X.H. Chen, Research Progress in Influence of Twins on Mechanical and Electrical Properties of Cu, J. Mater. Eng., 2011, 1, p p87-91. X.H. Chen, Research Progress in Influence of Twins on Mechanical and Electrical Properties of Cu, J. Mater. Eng., 2011, 1, p p87-91.
32.
Zurück zum Zitat N. Ferralis, Probing Mechanical Properties of Graphene with Raman Spectroscopy, J. Mater. Sci., 2010, 45, p p5135-5149.CrossRef N. Ferralis, Probing Mechanical Properties of Graphene with Raman Spectroscopy, J. Mater. Sci., 2010, 45, p p5135-5149.CrossRef
33.
Zurück zum Zitat H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake and A.A. Balandin, Thermal Conductivity of Graphene with Defects Induced by Electron Beam Irradiation, Nanoscale, 2016, 8, p p14608-14616.CrossRef H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake and A.A. Balandin, Thermal Conductivity of Graphene with Defects Induced by Electron Beam Irradiation, Nanoscale, 2016, 8, p p14608-14616.CrossRef
34.
Zurück zum Zitat H.J. Cao, D.B. Xiong, Z.Q. Tan, G.L. Fan, Z.Q. Li, Q. Guo, Y.S. Su, C.P. Guo and D. Zhang, Thermal Properties of in Situ Grown Graphene Reinforced Copper Matrix Laminated Composites, J. Alloys Compd., 2019, 771, p 228–237.CrossRef H.J. Cao, D.B. Xiong, Z.Q. Tan, G.L. Fan, Z.Q. Li, Q. Guo, Y.S. Su, C.P. Guo and D. Zhang, Thermal Properties of in Situ Grown Graphene Reinforced Copper Matrix Laminated Composites, J. Alloys Compd., 2019, 771, p 228–237.CrossRef
35.
Zurück zum Zitat P. Hidalgo-Manrique, X.Z. Lei, R.Y. Xu, M.Y. Zhou, I.A. Kinloch and R.J. Young, Copper/Graphene Composites: A Review, J. Mater. Sci., 2019, 54, p p12236-12289.CrossRef P. Hidalgo-Manrique, X.Z. Lei, R.Y. Xu, M.Y. Zhou, I.A. Kinloch and R.J. Young, Copper/Graphene Composites: A Review, J. Mater. Sci., 2019, 54, p p12236-12289.CrossRef
Metadaten
Titel
Enhanced Thermal Conductivity and Tensile Strength of Copper Matrix Composite with Few-Layer Graphene Nanoplates
verfasst von
Fei Long Jia
Kun Xia Wei
Wei Wei
Fu Qiang Chu
Qing Bo Du
Igor V. Alexandrov
Jing Hu
Publikationsdatum
28.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05902-1

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.