Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

02.06.2021

Microstructure and Magnetron Sputtering Properties of W/Re Alloy Targets Fabricated by Vacuum Sintering

verfasst von: Y. M. Wang, Q. H. Tang, P. Zhou

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To develop high-quality refractory metal targets, pure W and W/Re alloys (with Re contents of 1, 5 and 10 mass%) were fabricated via mechanical mixing, press forming and vacuum sintering. Properties such as relative density, grain size and orientation, and magnetron sputtering characteristics were investigated in the W/Re alloys. With increasing Re content, both the relative density and purity of the W-Re alloys increased, while the grain size decreased. The sizes of the grains in the W/10 mass% Re alloy target were mainly between 10 and 40 μm. The results of electron backscatter diffraction (EBSD) indicated that the grains in the W/Re alloys were randomly distributed and did not have a preferred orientation. The percentage of small-angle grain boundaries (< 10°) was greater than 85% in the W/10 mass% Re alloy. The grains in W/Re alloy thin films became gradually refined with increasing deposition pressure during magnetron sputtering. Additionally, the surface roughness of the thin films gradually decreased and the thickness of the thin films gradually increased with increasing deposition pressure. X-ray diffraction (XRD) patterns of the thin films exhibited (110), (200) and (211) diffraction peaks at 40.5°, 58.6° and 73.5°, respectively. With increasing deposition pressure, the intensity of the (110) diffraction peak gradually decreased, while the intensity of the (200) diffraction peak gradually increased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Yu, J.P. Song, F. Bai, A.L. Zheng and F.S. Peng, Ultra-high Purity Tungsten and Its Applications, Int. J Refract. Met. Hard Mater., 2015, 53, p 98–103.CrossRef Y. Yu, J.P. Song, F. Bai, A.L. Zheng and F.S. Peng, Ultra-high Purity Tungsten and Its Applications, Int. J Refract. Met. Hard Mater., 2015, 53, p 98–103.CrossRef
2.
Zurück zum Zitat X.Y. Wei, Preparation Technology and Application of High Purity Tungsten Target for Semiconductor, Cemented Carbide, 2017, 34, p 353–359. X.Y. Wei, Preparation Technology and Application of High Purity Tungsten Target for Semiconductor, Cemented Carbide, 2017, 34, p 353–359.
3.
Zurück zum Zitat F. Bai, The Study of Preparing of High Purity Tungsten Alloy Targets, A Dissertation Submitted to Xiamen University for Master Degree of Materials Engineering, Xiamen: Xiamen University, 2015, p 40-43 F. Bai, The Study of Preparing of High Purity Tungsten Alloy Targets, A Dissertation Submitted to Xiamen University for Master Degree of Materials Engineering, Xiamen: Xiamen University, 2015, p 40-43
4.
Zurück zum Zitat Y.Z. Ma, Y. Liu, W.S. Liu and L.P. Long, Preparation Procedure of High Purity Tungsten Via Electron Beam Side Surface Melting, Mater. Sci. Technol., 2014, 22, p 30–35. Y.Z. Ma, Y. Liu, W.S. Liu and L.P. Long, Preparation Procedure of High Purity Tungsten Via Electron Beam Side Surface Melting, Mater. Sci. Technol., 2014, 22, p 30–35.
5.
Zurück zum Zitat Z.H. Wang, M.X. Wang, M.Y. Chu, F. Guo, X. Zhao and J.Y. Shen, Preparation of W-Ti Sputtering Targets under Inert Atmosphere, Chin. J. Rare Met., 2006, 30, p 687–691.CrossRef Z.H. Wang, M.X. Wang, M.Y. Chu, F. Guo, X. Zhao and J.Y. Shen, Preparation of W-Ti Sputtering Targets under Inert Atmosphere, Chin. J. Rare Met., 2006, 30, p 687–691.CrossRef
6.
Zurück zum Zitat Z.C. Ding, M. Chen, S.Q. Liu, X.P. Wang and B.G. Lv, Preparation of High Purity W-Si Alloy Powder, Rare Metal Mat. Eng., 2014, 43, p 1269–1271. Z.C. Ding, M. Chen, S.Q. Liu, X.P. Wang and B.G. Lv, Preparation of High Purity W-Si Alloy Powder, Rare Metal Mat. Eng., 2014, 43, p 1269–1271.
7.
Zurück zum Zitat Z.C. Ding, J.J. He, J.F. Luo, Y.J. Li and X.D. Xiong, Effects of Vacuum Hot Pressing Sintering on the Performance of High Purity W-Si Alloy Target, Rare Metal Mat. Eng., 2014, 43, p 1403–1406. Z.C. Ding, J.J. He, J.F. Luo, Y.J. Li and X.D. Xiong, Effects of Vacuum Hot Pressing Sintering on the Performance of High Purity W-Si Alloy Target, Rare Metal Mat. Eng., 2014, 43, p 1403–1406.
8.
Zurück zum Zitat Q.X. Wang and Z.K. Fan, Application and Manufacturing Technology of Tungsten and Tungsten-titanium Targets, Powder Metall. Technol., 2009, 27, p 52–57. Q.X. Wang and Z.K. Fan, Application and Manufacturing Technology of Tungsten and Tungsten-titanium Targets, Powder Metall. Technol., 2009, 27, p 52–57.
9.
Zurück zum Zitat Y.M. Wang, Q.H. Tang, D.Q. Chen, X.B. Liu, J.H. Yan and X. Xiong, Microstructure and Magnetron Sputtering Properties of Tungsten Target Fabricated by Low Pressure Plasma Spraying, Int. J. Refract. Met. Hard Mater., 2020, 87(105116), p 1–10. Y.M. Wang, Q.H. Tang, D.Q. Chen, X.B. Liu, J.H. Yan and X. Xiong, Microstructure and Magnetron Sputtering Properties of Tungsten Target Fabricated by Low Pressure Plasma Spraying, Int. J. Refract. Met. Hard Mater., 2020, 87(105116), p 1–10.
10.
Zurück zum Zitat Y.M. Wang, Q.H. Tang, Z.Q. Yan and F. Wang, Influence of Vacuum Chamber Pressure on Microstructure and Properties of Tungsten Target Fabricated by Low Pressure Plasma Spraying, J. Mater. Eng., 2018, 46, p 104–112.CrossRef Y.M. Wang, Q.H. Tang, Z.Q. Yan and F. Wang, Influence of Vacuum Chamber Pressure on Microstructure and Properties of Tungsten Target Fabricated by Low Pressure Plasma Spraying, J. Mater. Eng., 2018, 46, p 104–112.CrossRef
11.
Zurück zum Zitat B. Gao, L.F. Shao and H.F. Zhang, Preparation and Properties of Metal Tungsten Sputtering Target, World Nonferr. Met., 2017, 33, p 249–250. B. Gao, L.F. Shao and H.F. Zhang, Preparation and Properties of Metal Tungsten Sputtering Target, World Nonferr. Met., 2017, 33, p 249–250.
12.
Zurück zum Zitat A.R. Lipski and R.S. Lefferts, Making Tungsten Targets Using Tungsten Oxide Powder, Nucl. Instrum. Methods Phys. Res. Sect. A, 2011, 655, p 41–43.CrossRef A.R. Lipski and R.S. Lefferts, Making Tungsten Targets Using Tungsten Oxide Powder, Nucl. Instrum. Methods Phys. Res. Sect. A, 2011, 655, p 41–43.CrossRef
13.
Zurück zum Zitat Y.Z. Jin, D.L. Liu and J. Chen, Studying on Manufacture and Application of Sputtering Target Materials, J. Sichuan Univ. Sci. Eng. Nat. Sci. Ed., 2005, 18, p 22–24. Y.Z. Jin, D.L. Liu and J. Chen, Studying on Manufacture and Application of Sputtering Target Materials, J. Sichuan Univ. Sci. Eng. Nat. Sci. Ed., 2005, 18, p 22–24.
14.
Zurück zum Zitat A.H. Yang, Y. Zhu, Z.M. Deng, H.C. Xie, G.Q. Zhang and F. Wu, Investigation on Microstructure and Texture in High Pure Gold Sputtering Targets by EBSD, Precious Metal., 2014, 35, p 44–48. A.H. Yang, Y. Zhu, Z.M. Deng, H.C. Xie, G.Q. Zhang and F. Wu, Investigation on Microstructure and Texture in High Pure Gold Sputtering Targets by EBSD, Precious Metal., 2014, 35, p 44–48.
15.
Zurück zum Zitat Y.Q. Xia, D.C. Wang, J.S. Wang, E.K. Zhu and S.L. Yin, Study on High Temperature Molybdenum Alloy Doped with Rare-earth Element, Chin. Molybden. Indus., 2001, 25, p 76–78. Y.Q. Xia, D.C. Wang, J.S. Wang, E.K. Zhu and S.L. Yin, Study on High Temperature Molybdenum Alloy Doped with Rare-earth Element, Chin. Molybden. Indus., 2001, 25, p 76–78.
16.
Zurück zum Zitat S.E. Hornstrom, T. Lin, O. Thomas, P.M. Fryer and J.M.E. Harper, Tungsten-rhenium Alloys as Diffusion Barriers between Aluminum and Silicon, J. Vacuum Sci. Technol., 1988, 6, p 1650–1655.CrossRef S.E. Hornstrom, T. Lin, O. Thomas, P.M. Fryer and J.M.E. Harper, Tungsten-rhenium Alloys as Diffusion Barriers between Aluminum and Silicon, J. Vacuum Sci. Technol., 1988, 6, p 1650–1655.CrossRef
17.
Zurück zum Zitat H. Lange, W. Möhling and G. Marxsen, W-Re (6 wt.%) and W-Ti (10 wt.%) Alloys as Diffusion Barriers between Aluminum and Silicon, Thin Solid Films, 1991, 205, p 47-51 H. Lange, W. Möhling and G. Marxsen, W-Re (6 wt.%) and W-Ti (10 wt.%) Alloys as Diffusion Barriers between Aluminum and Silicon, Thin Solid Films, 1991, 205, p 47-51
18.
Zurück zum Zitat S.O. Safonov, V.P. Bespalov, A.A. Golishnikov and M.G. Putrya, Estimating the Reliability of Aluminum Metallization of Integrated Circuits by Accelerated Electromigration Testing at Constant Temperature, Russ. Microelectron., 2015, 44, p 453–459.CrossRef S.O. Safonov, V.P. Bespalov, A.A. Golishnikov and M.G. Putrya, Estimating the Reliability of Aluminum Metallization of Integrated Circuits by Accelerated Electromigration Testing at Constant Temperature, Russ. Microelectron., 2015, 44, p 453–459.CrossRef
19.
Zurück zum Zitat I. De Munari, A. Scorzoni, F. Tamarri and D. Govoni, Drawbacks to Using NIST Electromigration Test-structures to Test Bamboo Metal Lines, IEEE Trans. Electron Dev., 1994, 41, p 2276–2280.CrossRef I. De Munari, A. Scorzoni, F. Tamarri and D. Govoni, Drawbacks to Using NIST Electromigration Test-structures to Test Bamboo Metal Lines, IEEE Trans. Electron Dev., 1994, 41, p 2276–2280.CrossRef
20.
Zurück zum Zitat T.Y. Cheng, N. Xiong, K.Y. Peng, H.B. Yang and J.C. Yin, The Aplication and Preparation Technology of Rhenium and Rhenium Alloys, Rare Metal Mat. Eng., 2009, 38, p 373–376.CrossRef T.Y. Cheng, N. Xiong, K.Y. Peng, H.B. Yang and J.C. Yin, The Aplication and Preparation Technology of Rhenium and Rhenium Alloys, Rare Metal Mat. Eng., 2009, 38, p 373–376.CrossRef
21.
Zurück zum Zitat H.Z. Wang and S.L. Yang, Character, Application and Preparation Method of Rhenium, J Chin. Rare Earth Soc., 2005, 23, p 189–193. H.Z. Wang and S.L. Yang, Character, Application and Preparation Method of Rhenium, J Chin. Rare Earth Soc., 2005, 23, p 189–193.
22.
Zurück zum Zitat Z.Q. Cui and B.X. Liu, Metallurgy and Heat Treatment Principle, Haerbin Institute of Technology Press, Haerbin, 1998. Z.Q. Cui and B.X. Liu, Metallurgy and Heat Treatment Principle, Haerbin Institute of Technology Press, Haerbin, 1998.
23.
Zurück zum Zitat J.J. Park, Creep Strength of a Tungsten–rhenium–hafnium Carbide Alloy from 2200 to 2400 , Mater. Sci. Eng. A, 1999, 265, p 174–178.CrossRef J.J. Park, Creep Strength of a Tungsten–rhenium–hafnium Carbide Alloy from 2200 to 2400 , Mater. Sci. Eng. A, 1999, 265, p 174–178.CrossRef
24.
Zurück zum Zitat K. Yang, B. Cao and W.J. Yu, Precise Resistance Spot Welding of Automotive Lamp, Electr. Weld. Mach., 2010, 40, p 139–141. K. Yang, B. Cao and W.J. Yu, Precise Resistance Spot Welding of Automotive Lamp, Electr. Weld. Mach., 2010, 40, p 139–141.
25.
Zurück zum Zitat A. H. Luo, and D. L. Jacobson, Creep Behavior of a Tungsten-3.6%rhenium-0.33%zirconium Carbide Alloy, Int. J. Refract. Met. Hard Mater., 1992, 11, p 97-103 A. H. Luo, and D. L. Jacobson, Creep Behavior of a Tungsten-3.6%rhenium-0.33%zirconium Carbide Alloy, Int. J. Refract. Met. Hard Mater., 1992, 11, p 97-103
26.
Zurück zum Zitat L.Y. Wang, C.Z. Wang, J. Ma and Y.Y. Hou, The Technics of W-Re Alloy Coating by Chemical Vapor Deposition, China Surf. Eng., 2006, 19, p 39–42. L.Y. Wang, C.Z. Wang, J. Ma and Y.Y. Hou, The Technics of W-Re Alloy Coating by Chemical Vapor Deposition, China Surf. Eng., 2006, 19, p 39–42.
27.
Zurück zum Zitat Y.M. Wang, M.H. Chen, Y. Li, K.W. Tang, W.W. Ding, X. Xiong, Q.L. Shi, L. Xie and X. Xu, Near-net-shape Tungsten-rhenium Alloy Parts Produced by Shrouded Plasma Spray Forming, J. Aeronaut. Mater., 2016, 36, p 24–34. Y.M. Wang, M.H. Chen, Y. Li, K.W. Tang, W.W. Ding, X. Xiong, Q.L. Shi, L. Xie and X. Xu, Near-net-shape Tungsten-rhenium Alloy Parts Produced by Shrouded Plasma Spray Forming, J. Aeronaut. Mater., 2016, 36, p 24–34.
28.
Zurück zum Zitat Y.M. Wang, X. Xiong, Z.W. Zhao, X. Lu, J.H. Yan, X.B. Min and F. Zheng, Near-net-shape Tungsten-rhenium Alloy Parts Produced by Plasma Spray Forming and Hot Isostatic Pressing, Mater. Trans., 2014, 55, p 713–721.CrossRef Y.M. Wang, X. Xiong, Z.W. Zhao, X. Lu, J.H. Yan, X.B. Min and F. Zheng, Near-net-shape Tungsten-rhenium Alloy Parts Produced by Plasma Spray Forming and Hot Isostatic Pressing, Mater. Trans., 2014, 55, p 713–721.CrossRef
29.
Zurück zum Zitat S. Pramanik, A. K. Srivastav, B. Manuel Jolly, N. Chawake, and B. S. Murty, Effect of Re on Microstructural Evolution and Densification Kinetics During Spark Plasma Sintering of Nanocrystalline W, Adv. Powder Technol., 2019, 30, p 2779-2786 S. Pramanik, A. K. Srivastav, B. Manuel Jolly, N. Chawake, and B. S. Murty, Effect of Re on Microstructural Evolution and Densification Kinetics During Spark Plasma Sintering of Nanocrystalline W, Adv. Powder Technol., 2019, 30, p 2779-2786
30.
Zurück zum Zitat C.F. Lo, P. Mcdonald, D. Draper and P. Gilman, Influence of Tungsten Sputtering Target Density on Physical Vapor Deposition Thin Film Properties, J. Electron. Mater., 2005, 34, p 1468–1473.CrossRef C.F. Lo, P. Mcdonald, D. Draper and P. Gilman, Influence of Tungsten Sputtering Target Density on Physical Vapor Deposition Thin Film Properties, J. Electron. Mater., 2005, 34, p 1468–1473.CrossRef
31.
Zurück zum Zitat T. Leonhardt, C. Trybus and R. Hickman, Consolidation Methods for Spherical Rhenium and Rhenium Alloys, Powder Metall., 2003, 46, p 148–153.CrossRef T. Leonhardt, C. Trybus and R. Hickman, Consolidation Methods for Spherical Rhenium and Rhenium Alloys, Powder Metall., 2003, 46, p 148–153.CrossRef
32.
Zurück zum Zitat R.I. Jaffee, C.T. Sims, and J. J. Hardwood, The Effect of Rhenium on the Fabrication and Ductility of Molybdenum and Tungsten, In Proceedings of 3rd Plansee-Seminar Proceedings (Reutte, Austria: Plansee Group), 1958, p 380-410 R.I. Jaffee, C.T. Sims, and J. J. Hardwood, The Effect of Rhenium on the Fabrication and Ductility of Molybdenum and Tungsten, In Proceedings of 3rd Plansee-Seminar Proceedings (Reutte, Austria: Plansee Group), 1958, p 380-410
33.
Zurück zum Zitat K. Johann, L. Alexander, K. Daniel, C. Helmut, and M.K. Verena, Thermally Activated Deformation Mechanisms and Solid Solution Softening in W-Re Alloys Investigated via High Temperature Nanoindentation, Mater. Design, 2020, 189, p (108499)1-6 K. Johann, L. Alexander, K. Daniel, C. Helmut, and M.K. Verena, Thermally Activated Deformation Mechanisms and Solid Solution Softening in W-Re Alloys Investigated via High Temperature Nanoindentation, Mater. Design, 2020, 189, p (108499)1-6
34.
Zurück zum Zitat H. Wang, M.X. Xia, Y.C. Li, X.F. Liu, X.M. Cai, R. Bai and X. Zhang, Treatment of Ammonia Nitrogen Waste Water from Tungsten Smelter by Breakpoint Chlorination, Chin. Tungsten Indus., 2019, 34, p 64–69. H. Wang, M.X. Xia, Y.C. Li, X.F. Liu, X.M. Cai, R. Bai and X. Zhang, Treatment of Ammonia Nitrogen Waste Water from Tungsten Smelter by Breakpoint Chlorination, Chin. Tungsten Indus., 2019, 34, p 64–69.
35.
Zurück zum Zitat Z.J. Liu, Y.X. Chen, W.J. Huang and H.J. Huang, Manufacture and Application of Sputtering Target Materials, South. Metal., 2003, 23, p 23–25. Z.J. Liu, Y.X. Chen, W.J. Huang and H.J. Huang, Manufacture and Application of Sputtering Target Materials, South. Metal., 2003, 23, p 23–25.
36.
Zurück zum Zitat Q. Tan, Manufacture and Application of Mo-Re Alloys, Chin. Molybden. Indus., 1998, 22, p 26–28. Q. Tan, Manufacture and Application of Mo-Re Alloys, Chin. Molybden. Indus., 1998, 22, p 26–28.
37.
Zurück zum Zitat X.S. Yin, Tungsten/Rhenium Alloy and Tungsten/Rhenium Thermocouple, Metall. Indus. Press, Beijing, 1992, p 7 X.S. Yin, Tungsten/Rhenium Alloy and Tungsten/Rhenium Thermocouple, Metall. Indus. Press, Beijing, 1992, p 7
38.
Zurück zum Zitat C. Guan, J.J. He, H. Zeng, X.Y. Wang and Y.J. Li, Microstructure and Texture Evolution of Ultra-high Pure CuMn Alloy Material, Chin. Rare Metal., 2017, 41, p 120–125. C. Guan, J.J. He, H. Zeng, X.Y. Wang and Y.J. Li, Microstructure and Texture Evolution of Ultra-high Pure CuMn Alloy Material, Chin. Rare Metal., 2017, 41, p 120–125.
39.
Zurück zum Zitat C.B. Wei, M.J. Dai, H.J. Hou, S.S. Lin and L. Zhao, Influence of Deposition Pressure on Structure and Tribological Properties of W-S-C Composite Films, Lubr. Eng., 2012, 37, p 69–73. C.B. Wei, M.J. Dai, H.J. Hou, S.S. Lin and L. Zhao, Influence of Deposition Pressure on Structure and Tribological Properties of W-S-C Composite Films, Lubr. Eng., 2012, 37, p 69–73.
40.
Zurück zum Zitat J.T. He, H.C. Cai and Y.J. Xue, Effect of Deposition Pressure on Tribological Properties of WS2 Films by Magnetron Sputtering, Surf. Technol., 2020, 49, p 180–187. J.T. He, H.C. Cai and Y.J. Xue, Effect of Deposition Pressure on Tribological Properties of WS2 Films by Magnetron Sputtering, Surf. Technol., 2020, 49, p 180–187.
Metadaten
Titel
Microstructure and Magnetron Sputtering Properties of W/Re Alloy Targets Fabricated by Vacuum Sintering
verfasst von
Y. M. Wang
Q. H. Tang
P. Zhou
Publikationsdatum
02.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05907-w

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.