Skip to main content
Erschienen in: Journal of Iron and Steel Research International 5/2022

25.10.2021 | Original Paper

Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar

verfasst von: J.L. Guo, T.J. Chen

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of H2SO4 concentration and current in electrochemical corrosion on surface layer softening or plasticizing of Q235 steel bar and their effects on subsequent electrochemical cold drawing (ECD) were investigated. The results indicate that the electrochemical corrosion can soften or plasticize the surface layer of Q235 steel bar and then make the subsequent ECD be conducted more easily. The softening degree and thickness of the surface layer are continuously enhanced with increasing corrosion rate, i.e., increasing H2SO4 concentration or current, due to the generation of more vacancy clusters in deeper regions of surface layer. These vacancy clusters then relax dislocations through being absorbed during ECD, and the formation and movement of additional dislocation flux are thereby enhanced, resulting in the further obvious decrease in the drawing force. It is also due to the enhanced formation and movement of additional dislocation flux that the dislocation density and thus the hardness of the surface layer are decreased, as well as that the texture structure is weakened. These behaviors are enhanced as the corrosion rate increases.
Literatur
[1]
Zurück zum Zitat L. Li, T. Chen, S. Zhang, E.M. Gutman, Y. Unigovski, F. Yan, Mater. Sci. Technol. 33 (2017) 244–254.CrossRef L. Li, T. Chen, S. Zhang, E.M. Gutman, Y. Unigovski, F. Yan, Mater. Sci. Technol. 33 (2017) 244–254.CrossRef
[2]
Zurück zum Zitat N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Mater. Des. 60 (2014) 540–547.CrossRef N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Mater. Des. 60 (2014) 540–547.CrossRef
[3]
Zurück zum Zitat K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Sharma, Mater. Sci. Eng. A 733 (2018) 393–407.CrossRef K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Sharma, Mater. Sci. Eng. A 733 (2018) 393–407.CrossRef
[4]
Zurück zum Zitat S. He, A. Van Bael, S.Y. Li, P. Van Houtte, F. Mei, A. Sarban, Mater. Sci. Eng. A 346 (2003) 101–107.CrossRef S. He, A. Van Bael, S.Y. Li, P. Van Houtte, F. Mei, A. Sarban, Mater. Sci. Eng. A 346 (2003) 101–107.CrossRef
[5]
Zurück zum Zitat H.L. Seet, X.P. Li, K.S. Lee, L.Q. Liu, J. Mater. Process. Technol. 192–193 (2007) 350–354.CrossRef H.L. Seet, X.P. Li, K.S. Lee, L.Q. Liu, J. Mater. Process. Technol. 192–193 (2007) 350–354.CrossRef
[6]
Zurück zum Zitat L.L. Li, T.J. Chen, S.Q. Zhang, F.Y Yan, J. Mater. Process. Technol. 240 (2017) 33–41. L.L. Li, T.J. Chen, S.Q. Zhang, F.Y Yan, J. Mater. Process. Technol. 240 (2017) 33–41.
[7]
[8]
Zurück zum Zitat S. Liu, X.B. Shan, K. Guo, Y.C. Yang, T. Xie, Ultrasonics 83 (2018) 60–67.CrossRef S. Liu, X.B. Shan, K. Guo, Y.C. Yang, T. Xie, Ultrasonics 83 (2018) 60–67.CrossRef
[9]
Zurück zum Zitat K. Siegert, A. Möck, J. Mater. Process. Technol. 60 (1996) 657–660.CrossRef K. Siegert, A. Möck, J. Mater. Process. Technol. 60 (1996) 657–660.CrossRef
[10]
Zurück zum Zitat M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.C. Hung, Y.C. Tsai, C.H. Hung, J. Mater. Process. Technol. 140 (2003) 30–35.CrossRef M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.C. Hung, Y.C. Tsai, C.H. Hung, J. Mater. Process. Technol. 140 (2003) 30–35.CrossRef
[11]
Zurück zum Zitat J. Petruzelka, J. Sarmanova, A. Sarman, J. Mater. Process. Technol. 60 (1996) 661–668.CrossRef J. Petruzelka, J. Sarmanova, A. Sarman, J. Mater. Process. Technol. 60 (1996) 661–668.CrossRef
[12]
Zurück zum Zitat V.L.A. Silveira, R.A.F.O. Fortes, W.A. Mannheimer, Scripta Metall. 17 (1983) 1381–1382.CrossRef V.L.A. Silveira, R.A.F.O. Fortes, W.A. Mannheimer, Scripta Metall. 17 (1983) 1381–1382.CrossRef
[13]
Zurück zum Zitat G.Y. Tang, M.X. Zheng, Y.H. Zhu, J. Zhang, W. Fang, Q. Li, J. Mater. Process. Technol. 84 (1998) 268–270.CrossRef G.Y. Tang, M.X. Zheng, Y.H. Zhu, J. Zhang, W. Fang, Q. Li, J. Mater. Process. Technol. 84 (1998) 268–270.CrossRef
[14]
Zurück zum Zitat G.Y. Tang, J. Zhang, Y.J. Yan, H.H. Zhou, W. Fang, J. Mater. Process. Technol. 137 (2003) 96–99.CrossRef G.Y. Tang, J. Zhang, Y.J. Yan, H.H. Zhou, W. Fang, J. Mater. Process. Technol. 137 (2003) 96–99.CrossRef
[15]
Zurück zum Zitat E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing Co., Pte. Ltd., New Jersey, USA, 1994.CrossRef E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing Co., Pte. Ltd., New Jersey, USA, 1994.CrossRef
[16]
Zurück zum Zitat T. Magnin, A. Chambreuil, B. Bayle, Acta Mater. 44 (1996) 1457–1470.CrossRef T. Magnin, A. Chambreuil, B. Bayle, Acta Mater. 44 (1996) 1457–1470.CrossRef
[18]
[20]
Zurück zum Zitat Y.B. Unigovski, E.M. Gutman, Z. Koren, B. Borohov, J. Met. Mater. Miner. 22 (2012) 137–140. Y.B. Unigovski, E.M. Gutman, Z. Koren, B. Borohov, J. Met. Mater. Miner. 22 (2012) 137–140.
[21]
Zurück zum Zitat E.M. Gutman, Y. Unigovski, R. Shneck, F. Ye, Y. Liang, Appl. Surf. Sci. 388 (2016) 49–56.CrossRef E.M. Gutman, Y. Unigovski, R. Shneck, F. Ye, Y. Liang, Appl. Surf. Sci. 388 (2016) 49–56.CrossRef
[22]
Zurück zum Zitat T.J. Chen, B.Q. Yang, B. Li, J.L. Guo, P. Zhang, X.Z. Cao, J. Mater. Process. Technol. 275 (2020) 116375. T.J. Chen, B.Q. Yang, B. Li, J.L. Guo, P. Zhang, X.Z. Cao, J. Mater. Process. Technol. 275 (2020) 116375.
[24]
[25]
Zurück zum Zitat Z.Y. Cui, Z.Y. Liu, L.W. Wang, X.G. Li, C.W. Du, X. Wang, Mater. Sci. Eng. A. 677 (2016) 259–273.CrossRef Z.Y. Cui, Z.Y. Liu, L.W. Wang, X.G. Li, C.W. Du, X. Wang, Mater. Sci. Eng. A. 677 (2016) 259–273.CrossRef
[26]
Zurück zum Zitat X.Z. Zhang, T.J. Chen, Mater. Des. 191 (2020) 108695. X.Z. Zhang, T.J. Chen, Mater. Des. 191 (2020) 108695.
[27]
Zurück zum Zitat X.M. Deng, L.L. Xie, L.M. Yan, in: X.M. Deng, L.L. Xie, L.M. Yan (Eds.), Metal extrusion and drawing engineering, Hefei University of Technology Press, Hefei, China, 2014. X.M. Deng, L.L. Xie, L.M. Yan, in: X.M. Deng, L.L. Xie, L.M. Yan (Eds.), Metal extrusion and drawing engineering, Hefei University of Technology Press, Hefei, China, 2014.
[28]
Zurück zum Zitat Z. Panossian, N.L. de Almeida, R.M.F. de Sousa, G. de S. Pimenta, L.B.S. Marques, Corros. Sci. 58 (2012) 1–11. Z. Panossian, N.L. de Almeida, R.M.F. de Sousa, G. de S. Pimenta, L.B.S. Marques, Corros. Sci. 58 (2012) 1–11.
[29]
Zurück zum Zitat S. Sahu, M. Palaniappa, S.N. Paul, M. Roy, Mater. Lett. 64 (2010) 12–14.CrossRef S. Sahu, M. Palaniappa, S.N. Paul, M. Roy, Mater. Lett. 64 (2010) 12–14.CrossRef
[30]
[31]
Zurück zum Zitat X.G. Zhang, Electrochemical Thermodynamics and Kinetics, Corrosion and Electrochemistry of Zinc, Springer, Boston, MA, USA, 1996. X.G. Zhang, Electrochemical Thermodynamics and Kinetics, Corrosion and Electrochemistry of Zinc, Springer, Boston, MA, USA, 1996.
[32]
Zurück zum Zitat K. Elayaperumal, V.S. Raja, Corrosion Failures, John Wiley & Sons, New Jersey, USA, 2015.CrossRef K. Elayaperumal, V.S. Raja, Corrosion Failures, John Wiley & Sons, New Jersey, USA, 2015.CrossRef
[33]
Zurück zum Zitat E. Detsi, M. van de Schootbrugge, S. Punzhin, P.R. Onck, J.T.M. De Hosson, Scripta Mater. 64 (2011) 319–322.CrossRef E. Detsi, M. van de Schootbrugge, S. Punzhin, P.R. Onck, J.T.M. De Hosson, Scripta Mater. 64 (2011) 319–322.CrossRef
[34]
[35]
[36]
[37]
Zurück zum Zitat K. Petersen, N. Thrane, R.M.J. Cotterill, Philos. Mag. 29 (1974) 9–23.CrossRef K. Petersen, N. Thrane, R.M.J. Cotterill, Philos. Mag. 29 (1974) 9–23.CrossRef
[38]
[39]
Zurück zum Zitat H.W. Pickering, C. Wagner, J. Electrochem. Soc. 114 (1967) 698–706.CrossRef H.W. Pickering, C. Wagner, J. Electrochem. Soc. 114 (1967) 698–706.CrossRef
[41]
Zurück zum Zitat Y.Z. Xu, L. Liu, Q.P. Zhou, X.N. Wang, Y. Huang, Wear 442–443 (2020) 203151. Y.Z. Xu, L. Liu, Q.P. Zhou, X.N. Wang, Y. Huang, Wear 442–443 (2020) 203151.
[42]
Zurück zum Zitat F. Fang, Y.F. Zhao, L.C. Zhou, X.J. Hu, Z.H. Xie, J. Jiang, Mater. Sci. Eng. A. 618 (2014) 505–510.CrossRef F. Fang, Y.F. Zhao, L.C. Zhou, X.J. Hu, Z.H. Xie, J. Jiang, Mater. Sci. Eng. A. 618 (2014) 505–510.CrossRef
Metadaten
Titel
Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar
verfasst von
J.L. Guo
T.J. Chen
Publikationsdatum
25.10.2021
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 5/2022
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00675-2

Weitere Artikel der Ausgabe 5/2022

Journal of Iron and Steel Research International 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.