Skip to main content
Erschienen in: Physics of Metals and Metallography 2/2020

01.02.2020 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Effect of Calcium and Silicon on the Character of Solidification and Strengthening of the Al–8% Zn–3% Mg Alloy

verfasst von: P. K. Shurkin, N. A. Belov, A. F. Musin, M. E. Samoshina

Erschienen in: Physics of Metals and Metallography | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The phase composition, character of nonequilibrium solidification, structure, and strengthening of alloys based on the Al–8% Zn–3% Mg (wt %) composition, which are cooperatively and separately alloyed with silicon and calcium, are studied in this work using calculations and experimental methods. In the Al–Zn–Mg–Ca–Si system, the (Al,Zn)4Ca, Al2CaSi2, Mg2Si and T (Al2Mg3Zn3) phases can be in equilibrium with the (Al) solid solution. Conditions of the two-stage annealing, which is used for the dissolution of eutectic inclusions of the Т and Mg2Si phases formed upon nonequilibrium solidification, are substantiated. The Al2CaSi2 phase is characterized by needle-like morphology and will not take on a spherical shape upon heating up to 520°С. Upon the individual introduction of silicon (0.5%) and calcium (1 and 2%), the effect of precipitation strengthening upon aging is seen to decrease. This is due to the decrease in the magnesium and zinc concentrations in the (Al) solid solution because of fixing these elements to form the Mg2Si and (Al,Zn)4Ca, phases, respectively. Upon the cooperative introduction of Si and Ca, the Al2CaSi2 phase forms; this allows us, to a considerable extent, to retain unchanged the initial composition of the (Al) solid solution and, therefore, the effect of precipitation strengthening.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat U. U. Entoni, F. R. Eliot, and M. D. Boll, Aluminum. Properties and Physical Metal Science: A Handbook, Ed. by J. E. Hatch (AMS, Metals Park, Ohio, 1984; Metallurgiya, Moscow, 1989). U. U. Entoni, F. R. Eliot, and M. D. Boll, Aluminum. Properties and Physical Metal Science: A Handbook, Ed. by J. E. Hatch (AMS, Metals Park, Ohio, 1984; Metallurgiya, Moscow, 1989).
2.
Zurück zum Zitat N. A. Belov, Phase Composition of Industrial and Prospective Aluminum Alloys (MISiS, Moscow, 2010) [in Russian]. N. A. Belov, Phase Composition of Industrial and Prospective Aluminum Alloys (MISiS, Moscow, 2010) [in Russian].
3.
Zurück zum Zitat X. Zou, H. Yan, and X. Chen, “Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment,” Trans. Nonferr. Met. Soc. China. 27, 2146−2155 (2017).CrossRef X. Zou, H. Yan, and X. Chen, “Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment,” Trans. Nonferr. Met. Soc. China. 27, 2146−2155 (2017).CrossRef
4.
Zurück zum Zitat D. Vojtěch, J. Šerák, O. Eckert, T. Kubatík, Č. Barta, Č. Barta, and E. Tagiev, “High strength Al–Zn–Mg–Cu–Ni–Si alloy with improved casting properties,” Mater. Sci. Technol. 19, 757–761 (2003).CrossRef D. Vojtěch, J. Šerák, O. Eckert, T. Kubatík, Č. Barta, Č. Barta, and E. Tagiev, “High strength Al–Zn–Mg–Cu–Ni–Si alloy with improved casting properties,” Mater. Sci. Technol. 19, 757–761 (2003).CrossRef
5.
Zurück zum Zitat B. S. Gong, Z. J. Liu, Y. L. Wang, Z. J. Zhang, P. Zhang, H. C. Jiang, L. J. Rong, and Z. F. Zhang, “Improving the fatigue strength of A7N01 aluminum alloy by adjusting Si content,” Mater. Sci. Eng., A 19, 15–22 (2019).CrossRef B. S. Gong, Z. J. Liu, Y. L. Wang, Z. J. Zhang, P. Zhang, H. C. Jiang, L. J. Rong, and Z. F. Zhang, “Improving the fatigue strength of A7N01 aluminum alloy by adjusting Si content,” Mater. Sci. Eng., A 19, 15–22 (2019).CrossRef
6.
Zurück zum Zitat C. Mondal, A. K. Mukhopadhyay, T. Raghu, and V. K. Varma, “Tensile properties of peak aged 7055 aluminum alloy extrusions,” Mater. Sci. Eng., A 454–455, 673–678 (2007).CrossRef C. Mondal, A. K. Mukhopadhyay, T. Raghu, and V. K. Varma, “Tensile properties of peak aged 7055 aluminum alloy extrusions,” Mater. Sci. Eng., A 454455, 673–678 (2007).CrossRef
7.
Zurück zum Zitat O. G. Senatorova, A. V. Bronz, V. V. Cheverikin, A. V. Somov, and N. E. Blinova, “Study of the structure and properties of especially strong aluminum alloys of the Al–Zn–Mg–Cu system,” Metallurgist 60, 978–982 (2017).CrossRef O. G. Senatorova, A. V. Bronz, V. V. Cheverikin, A. V. Somov, and N. E. Blinova, “Study of the structure and properties of especially strong aluminum alloys of the Al–Zn–Mg–Cu system,” Metallurgist 60, 978–982 (2017).CrossRef
8.
Zurück zum Zitat Z. Chen, Y. Mo, and Z. Nie, “Effect of Zn content on the microstructure and properties of super-high strength Al–Zn–Mg–Cu alloys,” Metall. Mater. Trans. A 44, 3910–3920 (2013).CrossRef Z. Chen, Y. Mo, and Z. Nie, “Effect of Zn content on the microstructure and properties of super-high strength Al–Zn–Mg–Cu alloys,” Metall. Mater. Trans. A 44, 3910–3920 (2013).CrossRef
9.
Zurück zum Zitat N. A. Belov, P. K. Shurkin, and T. K. Akopyan, “Structure and properties of deformed semi-finished products from high-strength aluminum alloy system Al–Zn–Mg–Ni–Fe,” Tsvetn. Met., No. 11, 98–103 (2016). N. A. Belov, P. K. Shurkin, and T. K. Akopyan, “Structure and properties of deformed semi-finished products from high-strength aluminum alloy system Al–Zn–Mg–Ni–Fe,” Tsvetn. Met., No. 11, 98–103 (2016).
10.
Zurück zum Zitat T. K. Akopyan, N. A. Belov, A. S. Aleshchenko, S. P. Galkin, Y. V. Gamin, M. V. Gorshenkov, V. V. Cheverikin, and P. K. Shurkin, “Formation of the gradient microstructure of a new Al alloy based on the Al–Zn–Mg–Fe–Ni system processed by radial-shear rolling,” Mater. Sci. Eng., A 746, 134–144 (2019).CrossRef T. K. Akopyan, N. A. Belov, A. S. Aleshchenko, S. P. Galkin, Y. V. Gamin, M. V. Gorshenkov, V. V. Cheverikin, and P. K. Shurkin, “Formation of the gradient microstructure of a new Al alloy based on the Al–Zn–Mg–Fe–Ni system processed by radial-shear rolling,” Mater. Sci. Eng., A 746, 134–144 (2019).CrossRef
11.
Zurück zum Zitat N. A. Belov, E. A. Naumova, and T. K. Akopyan, Aluminum-Based Eutectic Alloys: New Alloying Systems (ID “Ruda i metally”, Moscow, 2016) [in Russian]. N. A. Belov, E. A. Naumova, and T. K. Akopyan, Aluminum-Based Eutectic Alloys: New Alloying Systems (ID “Ruda i metally”, Moscow, 2016) [in Russian].
12.
Zurück zum Zitat N. A. Belov, T. K. Akopyan, S. S. Mishirov, and N. O. Korotkova, “Effect of Fe and Si on the microstructure and phase composition of the aluminium-calcium eutectic alloys,” Non-Ferrous Met., No. 2, 37–42 (2017). N. A. Belov, T. K. Akopyan, S. S. Mishirov, and N. O. Korotkova, “Effect of Fe and Si on the microstructure and phase composition of the aluminium-calcium eutectic alloys,” Non-Ferrous Met., No. 2, 37–42 (2017).
13.
Zurück zum Zitat N. A. Belov, E. A. Naumova, V. V. Doroshenko, and T. A. Bazlova, “Effect of scandium on the phase composition and hardening of casting aluminum alloys of the Al–Ca–Si system,” Russ. J. Non-Ferrous Met. 57, 695–702 (2016).CrossRef N. A. Belov, E. A. Naumova, V. V. Doroshenko, and T. A. Bazlova, “Effect of scandium on the phase composition and hardening of casting aluminum alloys of the Al–Ca–Si system,” Russ. J. Non-Ferrous Met. 57, 695–702 (2016).CrossRef
14.
Zurück zum Zitat P. K. Shurkin, A. P. Dolbachev, E. A. Naumova, and V. V. Doroshenko, “The effect of iron on the structure, hardening, and physical properties of Al–Zn–Mg–Ca alloys,” Tsvetn. Metall. 5, 69–77 (2018).CrossRef P. K. Shurkin, A. P. Dolbachev, E. A. Naumova, and V. V. Doroshenko, “The effect of iron on the structure, hardening, and physical properties of Al–Zn–Mg–Ca alloys,” Tsvetn. Metall. 5, 69–77 (2018).CrossRef
15.
Zurück zum Zitat E. A. Naumova, N. A. Belov, and T. A. Bazlova, “Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg,” Met. Sci. Heat Treat. 57, 274–280 (2015).CrossRef E. A. Naumova, N. A. Belov, and T. A. Bazlova, “Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg,” Met. Sci. Heat Treat. 57, 274–280 (2015).CrossRef
16.
Zurück zum Zitat P. Ramírez, F. G. Alday, H. E. Adabbo, and O. A. Ruano, “Superplastic behaviour of Al–5 wt % Ca–5 wt % Zn alloy,” Mater. Sci. Eng. 93, 11–15 (1987).CrossRef P. Ramírez, F. G. Alday, H. E. Adabbo, and O. A. Ruano, “Superplastic behaviour of Al–5 wt % Ca–5 wt % Zn alloy,” Mater. Sci. Eng. 93, 11–15 (1987).CrossRef
17.
Zurück zum Zitat N. Kohno, T. Sakuma, H. Watanabe, and S. Muromachi, “Superplastic deformation of Al–Ca–Zn eutectic alloys,” J. Jpn. Inst. Light Met. 38, 197–201 (1988).CrossRef N. Kohno, T. Sakuma, H. Watanabe, and S. Muromachi, “Superplastic deformation of Al–Ca–Zn eutectic alloys,” J. Jpn. Inst. Light Met. 38, 197–201 (1988).CrossRef
18.
Zurück zum Zitat J. Jung, Y. Cho, J. Lee, H. Kim, and K. Euh, “Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies,” Calphad 64, 236–247 (2019).CrossRef J. Jung, Y. Cho, J. Lee, H. Kim, and K. Euh, “Designing the composition and processing route of aluminum alloys using CALPHAD: Case studies,” Calphad 64, 236–247 (2019).CrossRef
19.
Zurück zum Zitat R. Shi and A. A. Luo, “Applications of CALPHAD modeling and databases in advanced lightweight metallic materials,” Calphad 62, 1–17 (2018).CrossRef R. Shi and A. A. Luo, “Applications of CALPHAD modeling and databases in advanced lightweight metallic materials,” Calphad 62, 1–17 (2018).CrossRef
20.
Zurück zum Zitat Thermo-Calc Software TTAL5 Al-Alloys. http:// www.thermocalc.com (Cited February 17, 2019). Thermo-Calc Software TTAL5 Al-Alloys. http:// www.thermocalc.com (Cited February 17, 2019).
21.
Zurück zum Zitat E. A. Naumova, “Use of calcium in alloys: From modifying to alloying,” Russ. J. Non-Ferrous Met. 59, 284–298 (2018).CrossRef E. A. Naumova, “Use of calcium in alloys: From modifying to alloying,” Russ. J. Non-Ferrous Met. 59, 284–298 (2018).CrossRef
22.
Zurück zum Zitat D. Pelton, G. Eriksson, and C. W. Bale, “Scheil–Gulliver constituent diagrams,” Metall. Mater. Trans. A 48, 3113–3129 (2017).CrossRef D. Pelton, G. Eriksson, and C. W. Bale, “Scheil–Gulliver constituent diagrams,” Metall. Mater. Trans. A 48, 3113–3129 (2017).CrossRef
Metadaten
Titel
Effect of Calcium and Silicon on the Character of Solidification and Strengthening of the Al–8% Zn–3% Mg Alloy
verfasst von
P. K. Shurkin
N. A. Belov
A. F. Musin
M. E. Samoshina
Publikationsdatum
01.02.2020
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 2/2020
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X20020155

Weitere Artikel der Ausgabe 2/2020

Physics of Metals and Metallography 2/2020 Zur Ausgabe