Skip to main content
Erschienen in: Rare Metals 4/2020

16.03.2020

Lithium-ion cell inconsistency analysis based on three-parameter Weibull probability model

verfasst von: Lin-Shu Wang, Yan-Yan Fang, Ting Zhao, Jian-Tao Wang, Hang Zhang, Lin Wang, Shi-Gang Lu

Erschienen in: Rare Metals | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The inconsistency of lithium-ion cells degrades battery performance, lifetime and even safety. The complexity of the cell reaction mechanism causes an irregular asymmetrical distribution of various cell parameters, such as capacity and internal resistance, among others. In this study, the Newman electrochemical model was used to simulate the 1C discharge curves of 100 LiMn2O4 pouch cells with parameter variations typically produced in manufacturing processes, and the three-parameter Weibull probability model was used to analyze the dispersion and symmetry of the resulting discharge voltage distributions. The results showed that the dispersion of the voltage distribution was related to the rate of decrease in the discharge voltage, and the symmetry was related to the change in the rate of voltage decrease. The effect of the cells’ capacity dominated the voltage distribution thermodynamically during discharge, and the phase transformation process significantly skewed the voltage distribution. The effects of the ohmic drop and polarization voltage on the voltage distribution were primarily kinetic. The presence of current returned the right-skewed voltage distribution caused by phase transformation to a more symmetrical distribution. Thus, the Weibull parameters elucidated the electrochemical behavior during the discharge process, and this method can guide the prediction and control of cell inconsistency, as well as detection and control strategies for cell management systems.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Xue N, Du W, Greszler TA, Shyy W, Martins JRRA. Design of a lithium-ion battery pack for PHEV using a hybrid optimization method. Appl Energy. 2014;115:591. Xue N, Du W, Greszler TA, Shyy W, Martins JRRA. Design of a lithium-ion battery pack for PHEV using a hybrid optimization method. Appl Energy. 2014;115:591.
[2]
Zurück zum Zitat Saw LH, Ye Y, Tay AAO. Integration issues of lithium-ion cell into electric vehicles cell pack. J Clean Prod. 2016;113:1032. Saw LH, Ye Y, Tay AAO. Integration issues of lithium-ion cell into electric vehicles cell pack. J Clean Prod. 2016;113:1032.
[3]
Zurück zum Zitat Alias N, Mohamad AA. Advances of aqueous rechargeable lithium-ion cell: a review. J Power Sources. 2015;274:237. Alias N, Mohamad AA. Advances of aqueous rechargeable lithium-ion cell: a review. J Power Sources. 2015;274:237.
[4]
Zurück zum Zitat Blomgren GE. The development and future of lithium ion cells. J Electrochem Soc. 2017;164(1):A5019. Blomgren GE. The development and future of lithium ion cells. J Electrochem Soc. 2017;164(1):A5019.
[5]
Zurück zum Zitat Chen Y, Li P, Li Y, Su Q, Xue L, Han Q, Su Q, Xue L, Han Q, Cao G, Li J. Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation. J. Mater Sci. 2018;53(3):2115. Chen Y, Li P, Li Y, Su Q, Xue L, Han Q, Su Q, Xue L, Han Q, Cao G, Li J. Enhancing the high-voltage electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode materials via hydrothermal lithiation. J. Mater Sci. 2018;53(3):2115.
[6]
Zurück zum Zitat Benitez L, Seminario JM. Ion diffusivity through the solid electrolyte interphase in lithium-ion cells. J Electrochem Soc. 2017;164(11):E3159. Benitez L, Seminario JM. Ion diffusivity through the solid electrolyte interphase in lithium-ion cells. J Electrochem Soc. 2017;164(11):E3159.
[7]
Zurück zum Zitat Taleghani ST, Marcos B, Zaghib K, Lantagne G. A study on the effect of porosity and particles size distribution on li-ion cell performance. J Electrochem Soc. 2017;164(11):E3179. Taleghani ST, Marcos B, Zaghib K, Lantagne G. A study on the effect of porosity and particles size distribution on li-ion cell performance. J Electrochem Soc. 2017;164(11):E3179.
[8]
Zurück zum Zitat Sripad S, Viswanathan V. Evaluation of current, future, and beyond li-ion cells for the electrification of light commercial vehicles: challenges and opportunities. J Electrochem Soc. 2017;164(11):E3635. Sripad S, Viswanathan V. Evaluation of current, future, and beyond li-ion cells for the electrification of light commercial vehicles: challenges and opportunities. J Electrochem Soc. 2017;164(11):E3635.
[9]
Zurück zum Zitat Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion cell management in electric vehicles. J Power Sources. 2013;226:272. Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion cell management in electric vehicles. J Power Sources. 2013;226:272.
[10]
Zurück zum Zitat Matthieu D, Nicolas V, Yann LB. Origins and accommodation of cell variations in Li-ion cell pack modeling. Int J Energy Res. 2010;34(2):216. Matthieu D, Nicolas V, Yann LB. Origins and accommodation of cell variations in Li-ion cell pack modeling. Int J Energy Res. 2010;34(2):216.
[11]
Zurück zum Zitat Zheng Y, Ouyang M, Lu L, Li J. Understanding aging mechanisms in lithium-ion cell packs: from cell capacity loss to pack capacity evolution. J Power Sources. 2015;278:287. Zheng Y, Ouyang M, Lu L, Li J. Understanding aging mechanisms in lithium-ion cell packs: from cell capacity loss to pack capacity evolution. J Power Sources. 2015;278:287.
[12]
Zurück zum Zitat Barai A, Ashwin TR, Iraklis C, McGordon A, Jennings P. Scale-up of lithium-ion cell model parameters from cell level to module level—identification of current issues. Energy Proc. 2017;138:223. Barai A, Ashwin TR, Iraklis C, McGordon A, Jennings P. Scale-up of lithium-ion cell model parameters from cell level to module level—identification of current issues. Energy Proc. 2017;138:223.
[13]
Zurück zum Zitat Zhang C, Jiang Y, Jiang J, Cheng G, Diao W, Zhang W. Study on cell pack inconsistency evolutions and equilibrium diagnosis for serial- connected lithium-ion cells. Appl Energy. 2017;207:510. Zhang C, Jiang Y, Jiang J, Cheng G, Diao W, Zhang W. Study on cell pack inconsistency evolutions and equilibrium diagnosis for serial- connected lithium-ion cells. Appl Energy. 2017;207:510.
[14]
Zurück zum Zitat Ye M, Song X, Xiong R, Sun F. A novel kinetic performance analysis and evaluation model of series-parallel connected cell pack for electric vehicles. IEEE Access. 2019;7:14256. Ye M, Song X, Xiong R, Sun F. A novel kinetic performance analysis and evaluation model of series-parallel connected cell pack for electric vehicles. IEEE Access. 2019;7:14256.
[15]
Zurück zum Zitat Wang S, Fernandez C, Chen M, Wang L, Su J. A novel safety anticipation estimation method for the aerial lithium-ion cell pack based on the real-time detection and filtering. J Clean Prod. 2018;185:187. Wang S, Fernandez C, Chen M, Wang L, Su J. A novel safety anticipation estimation method for the aerial lithium-ion cell pack based on the real-time detection and filtering. J Clean Prod. 2018;185:187.
[16]
Zurück zum Zitat Kenney B, Darcovich K, MacNeil DD, Davidson IJ. Modelling the impact of variations in electrode manufacturing on lithium-ion cell modules. J Power Sources. 2012;213:391. Kenney B, Darcovich K, MacNeil DD, Davidson IJ. Modelling the impact of variations in electrode manufacturing on lithium-ion cell modules. J Power Sources. 2012;213:391.
[17]
Zurück zum Zitat Santhanagopalan SE, White R. Quantifying cell-to-cell variations in lithium ion cells. Int J Electrochem. 2012;2012:1. Santhanagopalan SE, White R. Quantifying cell-to-cell variations in lithium ion cells. Int J Electrochem. 2012;2012:1.
[18]
Zurück zum Zitat Edouard C, Petit M, Forgez C, Bernard J, Revel R. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion cells aging. J Power Sources. 2016;325:482. Edouard C, Petit M, Forgez C, Bernard J, Revel R. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion cells aging. J Power Sources. 2016;325:482.
[19]
Zurück zum Zitat Hadigol M, Maute K, Doostan A. On uncertainty quantification of lithium-ion cells: application to an LiC6/LiCoO2 cell. J Power Sources. 2015;300:507. Hadigol M, Maute K, Doostan A. On uncertainty quantification of lithium-ion cells: application to an LiC6/LiCoO2 cell. J Power Sources. 2015;300:507.
[20]
Zurück zum Zitat Dai H, Wang N, Wei X, Sun Z, Wang J. A research review on the cell inconsistency of Li-ion traction batteries in electric vehicles. Autom Eng. 2014;36(2):181. Dai H, Wang N, Wei X, Sun Z, Wang J. A research review on the cell inconsistency of Li-ion traction batteries in electric vehicles. Autom Eng. 2014;36(2):181.
[21]
Zurück zum Zitat Rumpf K, Naumann M, Jossen A. Experimental investigation of parametric cell-to-cell variation and correlation based on 1100 commercial lithium-ion cells. J Energy Storage. 2017;14:224. Rumpf K, Naumann M, Jossen A. Experimental investigation of parametric cell-to-cell variation and correlation based on 1100 commercial lithium-ion cells. J Energy Storage. 2017;14:224.
[22]
Zurück zum Zitat Zheng YJ, Ouyang MG, Lu LG, Li JQ, Han XB, Xu LF, Ma HB, Dollmeyer TA, Freyermuth V. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model. Appl Energy. 2013;111:571. Zheng YJ, Ouyang MG, Lu LG, Li JQ, Han XB, Xu LF, Ma HB, Dollmeyer TA, Freyermuth V. Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model. Appl Energy. 2013;111:571.
[23]
Zurück zum Zitat Devie A, Dubarry M. Durability and reliability of electric vehicle cells under electric utility grid operations. Part 1: cell-to-cell variations and preliminary testing. Batteries. 2016;2(3):28. Devie A, Dubarry M. Durability and reliability of electric vehicle cells under electric utility grid operations. Part 1: cell-to-cell variations and preliminary testing. Batteries. 2016;2(3):28.
[24]
Zurück zum Zitat Rothgang S, Baumhofer T, Sauer DU. Diversion of aging of cell cells in automotive systems. In: 2014 IEEE Vehicle Power and Propulsion Conference, Coimbra; 2014. 1. Rothgang S, Baumhofer T, Sauer DU. Diversion of aging of cell cells in automotive systems. In: 2014 IEEE Vehicle Power and Propulsion Conference, Coimbra; 2014. 1.
[25]
Zurück zum Zitat Wuxing W. Test and Analysis the Performance of LiFePO4 Power Batterires. Wuhan: Wuhan University of Technology; 2010. 15. Wuxing W. Test and Analysis the Performance of LiFePO4 Power Batterires. Wuhan: Wuhan University of Technology; 2010. 15.
[26]
Zurück zum Zitat Weibull W, Rockey KC. Fatigue testing and analysis of results. J Appl Mech. 1962;29:607. Weibull W, Rockey KC. Fatigue testing and analysis of results. J Appl Mech. 1962;29:607.
[27]
Zurück zum Zitat Halder A, Mahadevan S. Probability, reliability and statistical methods in engineering design. Bautechnik. 2000;77:379. Halder A, Mahadevan S. Probability, reliability and statistical methods in engineering design. Bautechnik. 2000;77:379.
[28]
Zurück zum Zitat Dey DK, Jaisingh LR. Estimation of system reliability for independent series components with Weibull life distributions. IEEE Trans Reliab. 1988;37(4):401. Dey DK, Jaisingh LR. Estimation of system reliability for independent series components with Weibull life distributions. IEEE Trans Reliab. 1988;37(4):401.
[29]
Zurück zum Zitat Zhou L, Zheng Y, Ouyang M, Lu L. A simulation study on parameter variation effects in cell packs for electric vehicles. Energy Proc. 2017;105:4470. Zhou L, Zheng Y, Ouyang M, Lu L. A simulation study on parameter variation effects in cell packs for electric vehicles. Energy Proc. 2017;105:4470.
[30]
Zurück zum Zitat Kumar ES, Sarkar B. Improvement of life time and reliability of battery. Int J Eng Sci Adv Technol. 2012;2:1210. Kumar ES, Sarkar B. Improvement of life time and reliability of battery. Int J Eng Sci Adv Technol. 2012;2:1210.
[31]
Zurück zum Zitat Baumhöfer T, Brühl M, Rothgang S, Sauer DU. Production caused variation in capacity aging trend and correlation to initial cell performance. J Power Sources. 2014;247:332. Baumhöfer T, Brühl M, Rothgang S, Sauer DU. Production caused variation in capacity aging trend and correlation to initial cell performance. J Power Sources. 2014;247:332.
[32]
Zurück zum Zitat Cai L, White R. Reduction of model order based on proper orthogonal decomposition for lithium-ion cell simulations. J Electrochem Soc. 2009;156(3):A154. Cai L, White R. Reduction of model order based on proper orthogonal decomposition for lithium-ion cell simulations. J Electrochem Soc. 2009;156(3):A154.
[33]
Zurück zum Zitat Fuller T, Doyle M, Newman J. Relaxation phenomena in lithium ion insertion cells. J Electrochem Soc. 1993;141(4):982. Fuller T, Doyle M, Newman J. Relaxation phenomena in lithium ion insertion cells. J Electrochem Soc. 1993;141(4):982.
[34]
Zurück zum Zitat Srinivasan V, Newman J. Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc. 2004;151(10):A1517. Srinivasan V, Newman J. Discharge model for the lithium iron-phosphate electrode. J Electrochem Soc. 2004;151(10):A1517.
[35]
Zurück zum Zitat Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140:1526. Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140:1526.
[36]
Zurück zum Zitat Myung IJ. Tutorial on maximum likelihood estimation. J Math Psychol. 2003;47(1):90. Myung IJ. Tutorial on maximum likelihood estimation. J Math Psychol. 2003;47(1):90.
[37]
Zurück zum Zitat Rockette H, Antle C, Klimko LA. Maximum likelihood estimation with the Weibull model. J Am Stat Assoc. 1974;69(345):246. Rockette H, Antle C, Klimko LA. Maximum likelihood estimation with the Weibull model. J Am Stat Assoc. 1974;69(345):246.
[38]
Zurück zum Zitat Barai A, Uddin K, Dubarry M, Somerville L, McGordon A, Jennings P, Bloom I. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Prog Energy Combust Sci. 2019;72:1. Barai A, Uddin K, Dubarry M, Somerville L, McGordon A, Jennings P, Bloom I. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Prog Energy Combust Sci. 2019;72:1.
[39]
Zurück zum Zitat Dubarry M, Truchot C, Devie A, Liaw BY, Gering K, Sazhin S, Jamison D, Michelbacher C. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications: IV over-discharge phenomena. J Electrochem Soc. 2015;162(9):A1787. Dubarry M, Truchot C, Devie A, Liaw BY, Gering K, Sazhin S, Jamison D, Michelbacher C. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications: IV over-discharge phenomena. J Electrochem Soc. 2015;162(9):A1787.
[40]
Zurück zum Zitat Yang XQ, Sun X, Lee SJ, McBreen J, Mukerjee S, Daroux ML, Xing XK. In situ synchrotron X-ray diffraction studies of the phase transitions in LixMn2O4 cathode materials. Electrochem Solid-State Lett. 1999;2(4):157. Yang XQ, Sun X, Lee SJ, McBreen J, Mukerjee S, Daroux ML, Xing XK. In situ synchrotron X-ray diffraction studies of the phase transitions in LixMn2O4 cathode materials. Electrochem Solid-State Lett. 1999;2(4):157.
[41]
Zurück zum Zitat Liu W, Kowal K, Farrington GC. Mechanism of the electrochemical insertion of lithium into LiMn2O4 spinels. J Electrochem Soc. 1998;145(2):459. Liu W, Kowal K, Farrington GC. Mechanism of the electrochemical insertion of lithium into LiMn2O4 spinels. J Electrochem Soc. 1998;145(2):459.
[42]
Zurück zum Zitat Hu J, Li H, Huang X. Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. Solid State Ion. 2007;178(3–4):265. Hu J, Li H, Huang X. Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. Solid State Ion. 2007;178(3–4):265.
[43]
Zurück zum Zitat Lee SJ, Nishizawa M, Uchida I. Fabrication of mesophase pitch carbon thin film electrodes and the effect of heat treatment on electrochemical lithium insertion and extraction. Electrochim Acta. 1999;44(14):2379. Lee SJ, Nishizawa M, Uchida I. Fabrication of mesophase pitch carbon thin film electrodes and the effect of heat treatment on electrochemical lithium insertion and extraction. Electrochim Acta. 1999;44(14):2379.
[44]
Zurück zum Zitat Wang ZX, Huang XJ, Xue RJ, Chen LQ. A new possible mechanism of lithium insertion and extraction in low-temperature pyrolytic carbon electrode. Carbon. 1999;37(4):685. Wang ZX, Huang XJ, Xue RJ, Chen LQ. A new possible mechanism of lithium insertion and extraction in low-temperature pyrolytic carbon electrode. Carbon. 1999;37(4):685.
Metadaten
Titel
Lithium-ion cell inconsistency analysis based on three-parameter Weibull probability model
verfasst von
Lin-Shu Wang
Yan-Yan Fang
Ting Zhao
Jian-Tao Wang
Hang Zhang
Lin Wang
Shi-Gang Lu
Publikationsdatum
16.03.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 4/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01379-4

Weitere Artikel der Ausgabe 4/2020

Rare Metals 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.