Skip to main content
Erschienen in: Polymer Bulletin 3/2013

01.03.2013 | Original Paper

Low band gap Schiff base polymers obtained by complexation with Lewis acids

verfasst von: C. O. Sánchez, D. Huaiquimilla, P. Sobarzo, R. Abello, R. Silva

Erschienen in: Polymer Bulletin | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Two Schiff base polymers were prepared from the respective monomers by condensation method using toluene and N-methyl-2-pyrrolidinone as solvent. They were complexed with Al(III), In(III), and Cu(II) trifluoromethane sulfonates (triflates), and AlCl3 Lewis acids and characterized by FT-IR, UV–Vis spectroscopy, and scanning electron microscopy (SEM). Homogeneous films were prepared by spin coating in the presence and absence of Lewis acids. Polymer–Lewis acid interaction was confirmed by FT-IR, UV–Vis spectroscopy, and SEM. Lewis acid composition in polymers was determined by FT-IR spectroscopy. Absorption spectra of these conjugated Schiff base polymer complexes exhibited smaller optical band gap than pristine polymers. These variations ranged from 2.4 to 1.4 and 3.3 to 2.0 eV. Absorption depends on the Lewis acid in the polymer and band gap on the nature of the metal incorporated in the polymeric backbone. Solubility increased by complexation. The obtained complexes were soluble in trifluoroacetic and formic acids and in m-cresol. Polymer–Lewis acid solutions in m-cresol were stable for 98 h; the others remained stable over several months. The results of this study revealed that optical, solubility, and band-gap properties of conjugated Schiff base polymers can be modified by Lewis acids and these could be studied by optoelectronics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810CrossRef
2.
Zurück zum Zitat Ramaprasad AT, Rao V (2010) Chitin–polyaniline blend as humidity sensor. Sens Actuators B Chem 148:117–125CrossRef Ramaprasad AT, Rao V (2010) Chitin–polyaniline blend as humidity sensor. Sens Actuators B Chem 148:117–125CrossRef
3.
Zurück zum Zitat Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821CrossRef Dhand C, Das M, Datta M, Malhotra BD (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26:2811–2821CrossRef
4.
Zurück zum Zitat Wang Q, J-l Li, Gao F, Li W-S, Wu K-Z (2008) Activated carbon coated with polyaniline as an electrode material in supercapacitors. New Carbon Mater 23:275–280CrossRef Wang Q, J-l Li, Gao F, Li W-S, Wu K-Z (2008) Activated carbon coated with polyaniline as an electrode material in supercapacitors. New Carbon Mater 23:275–280CrossRef
5.
Zurück zum Zitat Madden JD, Rinderknecht D, Anquetil PA, Hunter IW (2007) Creep and cycle life in polypyrrole actuators. Sens Actuators A Phys 133:210–217CrossRef Madden JD, Rinderknecht D, Anquetil PA, Hunter IW (2007) Creep and cycle life in polypyrrole actuators. Sens Actuators A Phys 133:210–217CrossRef
6.
Zurück zum Zitat Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef
7.
Zurück zum Zitat Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248(13–14):1455–1468CrossRef Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248(13–14):1455–1468CrossRef
8.
Zurück zum Zitat Choi M-C, Kim Y, Ha C-S (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33:581–630CrossRef Choi M-C, Kim Y, Ha C-S (2008) Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 33:581–630CrossRef
9.
Zurück zum Zitat Gazotti WA, Nogueira AF, Girotto EM, Micaroni L, Martini M, das Neves S, De Paoli MA (2001) Optical devices based on conductive polymers. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials and devices, vol 10. Academic Press, San Diego, pp 53–98CrossRef Gazotti WA, Nogueira AF, Girotto EM, Micaroni L, Martini M, das Neves S, De Paoli MA (2001) Optical devices based on conductive polymers. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials and devices, vol 10. Academic Press, San Diego, pp 53–98CrossRef
10.
Zurück zum Zitat Krinichnyi VI, Yudanova EI (2011) Structural effect of electron acceptor on charge transfer in poly(3-hexylthiophene)/methanofullerene bulk heterojunctions. Sol Energy Mater Sol Cells 95(8):2302–2313CrossRef Krinichnyi VI, Yudanova EI (2011) Structural effect of electron acceptor on charge transfer in poly(3-hexylthiophene)/methanofullerene bulk heterojunctions. Sol Energy Mater Sol Cells 95(8):2302–2313CrossRef
11.
Zurück zum Zitat Chochos CL, Choulis SA (2011) How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog Polym Sci 36(10):1326–1414CrossRef Chochos CL, Choulis SA (2011) How the structural deviations on the backbone of conjugated polymers influence their optoelectronic properties and photovoltaic performance. Prog Polym Sci 36(10):1326–1414CrossRef
12.
Zurück zum Zitat Long Y-Z, Li M-M, Gu C, Wan M, Duvail J-L, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36(10):1415–1442CrossRef Long Y-Z, Li M-M, Gu C, Wan M, Duvail J-L, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog Polym Sci 36(10):1415–1442CrossRef
13.
Zurück zum Zitat Bejbouji H, Vignau L, Miane JL, Dang M-T, Oualim M, Harmouchi M, Mouhsen A (2010) Polyaniline as a hole injection layer on organic photovoltaic cells. Sol Energy Mater Sol Cells 94(2):176–181CrossRef Bejbouji H, Vignau L, Miane JL, Dang M-T, Oualim M, Harmouchi M, Mouhsen A (2010) Polyaniline as a hole injection layer on organic photovoltaic cells. Sol Energy Mater Sol Cells 94(2):176–181CrossRef
14.
Zurück zum Zitat Sata T (1994) Properties of composite membranes prepared from ion exchange membranes and conducting polymers V. Dependence of EMF of composite membranes prepared from anion exchange membranes and polypyrrole on relative humidity. J Membr Sci 91(1–2):199–207CrossRef Sata T (1994) Properties of composite membranes prepared from ion exchange membranes and conducting polymers V. Dependence of EMF of composite membranes prepared from anion exchange membranes and polypyrrole on relative humidity. J Membr Sci 91(1–2):199–207CrossRef
15.
Zurück zum Zitat Li R, Lixin W, Haoyuan A, Fuqiang Z (2007) Study of lithium/polypyrrole secondary batteries with Lithium as cathode and polypyrrole anode. Rare Met 26(6):591–600CrossRef Li R, Lixin W, Haoyuan A, Fuqiang Z (2007) Study of lithium/polypyrrole secondary batteries with Lithium as cathode and polypyrrole anode. Rare Met 26(6):591–600CrossRef
16.
Zurück zum Zitat Schuhmann W, Lammert R, Hämmerle M, Schmidt H-L (1991) Electrocatalytic properties of polypyrrole in amperometric electrodes. Biosens Bioelectron 6(8):689–697CrossRef Schuhmann W, Lammert R, Hämmerle M, Schmidt H-L (1991) Electrocatalytic properties of polypyrrole in amperometric electrodes. Biosens Bioelectron 6(8):689–697CrossRef
17.
Zurück zum Zitat Belo D, Almeida M (2010) Transition metal complexes based on thiophene-dithiolene ligands. Coord Chem Rev 254(13–14):1479–1492CrossRef Belo D, Almeida M (2010) Transition metal complexes based on thiophene-dithiolene ligands. Coord Chem Rev 254(13–14):1479–1492CrossRef
18.
Zurück zum Zitat Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–205CrossRef Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–205CrossRef
19.
Zurück zum Zitat Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91(11):954–985CrossRef Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91(11):954–985CrossRef
20.
Zurück zum Zitat Niu H-J, Huang Y-D, Bai X-D, Li X (2004) Novel poly-Schiff bases containing 4,4′-diamino-triphenylamine as hole transport material for organic electronic device. Mater Lett 58(24):2979–2983CrossRef Niu H-J, Huang Y-D, Bai X-D, Li X (2004) Novel poly-Schiff bases containing 4,4′-diamino-triphenylamine as hole transport material for organic electronic device. Mater Lett 58(24):2979–2983CrossRef
21.
Zurück zum Zitat Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110(11):6736–6767CrossRef Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110(11):6736–6767CrossRef
22.
23.
Zurück zum Zitat Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923CrossRef Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923CrossRef
24.
Zurück zum Zitat Bernede JC (2008) Organic photovoltaic cells: history, principle and techniques. J Chil Chem Soc 53(3):1549–1564CrossRef Bernede JC (2008) Organic photovoltaic cells: history, principle and techniques. J Chil Chem Soc 53(3):1549–1564CrossRef
26.
Zurück zum Zitat Gunes S, Saricifci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324CrossRef Gunes S, Saricifci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324CrossRef
27.
Zurück zum Zitat Brabec CJ, Sariciftci N, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11(1):15–26CrossRef Brabec CJ, Sariciftci N, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11(1):15–26CrossRef
28.
Zurück zum Zitat Lee KS, Won JI, Jung JC (1989) Synthesis and characterization of processable conducting polyazomethines. Makromol Chem 190:1547–1552CrossRef Lee KS, Won JI, Jung JC (1989) Synthesis and characterization of processable conducting polyazomethines. Makromol Chem 190:1547–1552CrossRef
29.
Zurück zum Zitat Lee KS, Samoc M (1991) Third-order nonlinear optical properties of wholly aromatic polyazomethines. Polym Commun 32:361–362 Lee KS, Samoc M (1991) Third-order nonlinear optical properties of wholly aromatic polyazomethines. Polym Commun 32:361–362
30.
Zurück zum Zitat Banerjee S, Gutch P, Saxena CJ (1995) Polyether azomethines. I. Synthesis and characterization. Polym Sci Part A 33(10):1719–1725CrossRef Banerjee S, Gutch P, Saxena CJ (1995) Polyether azomethines. I. Synthesis and characterization. Polym Sci Part A 33(10):1719–1725CrossRef
31.
Zurück zum Zitat Banerjee S, Gutch PK, Saxena CJ (1999) Poly-Schiff bases-IV. Synthesis and characterization of poly(etherazomethine)s. Des Monomers Polym 2(2):135–142CrossRef Banerjee S, Gutch PK, Saxena CJ (1999) Poly-Schiff bases-IV. Synthesis and characterization of poly(etherazomethine)s. Des Monomers Polym 2(2):135–142CrossRef
32.
Zurück zum Zitat Yang CJ, Jenekhe SA (1991) Conjugated aromatic poly(azomethines). Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem Mater 3(5):878–883CrossRef Yang CJ, Jenekhe SA (1991) Conjugated aromatic poly(azomethines). Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem Mater 3(5):878–883CrossRef
33.
Zurück zum Zitat Yang CJ, Jenekhe SA (1995) Conjugated aromatic polyimines. 2. Synthesis, structure and properties of new aromatic polyazomethines. Macromolecules 28(4):1180–1185CrossRef Yang CJ, Jenekhe SA (1995) Conjugated aromatic polyimines. 2. Synthesis, structure and properties of new aromatic polyazomethines. Macromolecules 28(4):1180–1185CrossRef
34.
Zurück zum Zitat Kim JY, Kim SH, Lee H-H, Ma W, Gong X (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576CrossRef Kim JY, Kim SH, Lee H-H, Ma W, Gong X (2006) New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv Mater 18:572–576CrossRef
35.
Zurück zum Zitat Scharher MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ (2006) Design rules for donors in bulk-heterojunction solar cells toward 10 % energy-conversion efficiency. Adv Mater 18:789–794CrossRef Scharher MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ (2006) Design rules for donors in bulk-heterojunction solar cells toward 10 % energy-conversion efficiency. Adv Mater 18:789–794CrossRef
36.
Zurück zum Zitat Campaigne E, Budde WM, Schaefer GF (1963) p-Aminobenzaldehyde. Org Synth Coll 4:31 Campaigne E, Budde WM, Schaefer GF (1963) p-Aminobenzaldehyde. Org Synth Coll 4:31
37.
Zurück zum Zitat El-Shekeil AG, Al-Yusufy FA, Saknidy S (1997) DC conductivity of some polyazomethines. Polym Int 42:39–44CrossRef El-Shekeil AG, Al-Yusufy FA, Saknidy S (1997) DC conductivity of some polyazomethines. Polym Int 42:39–44CrossRef
38.
Zurück zum Zitat Dalelio GF, Feigi DM, Kieffer NE, Mehta RK (1968) Polymeric azomethines. J Macromol Sci Chem A2(6):1223–1234 Dalelio GF, Feigi DM, Kieffer NE, Mehta RK (1968) Polymeric azomethines. J Macromol Sci Chem A2(6):1223–1234
39.
Zurück zum Zitat Dalelio GF, Strazik WF, Feigl DM, Schoenig RK (1968) Polymeric Schiff base. Alternate synthesis for iminobenzylidene polymers. J Macromol Sci Chem A1:1457–1475 Dalelio GF, Strazik WF, Feigl DM, Schoenig RK (1968) Polymeric Schiff base. Alternate synthesis for iminobenzylidene polymers. J Macromol Sci Chem A1:1457–1475
40.
Zurück zum Zitat Hu L, Frech R, Glatzhofer DT, Mason R, York SS (2008) Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system. Solid State Ion 179:401–408CrossRef Hu L, Frech R, Glatzhofer DT, Mason R, York SS (2008) Linear poly(propylenimine)/lithium triflate as a polymer electrolyte system. Solid State Ion 179:401–408CrossRef
41.
Zurück zum Zitat Mason RN, Hu L, Glatzhofer DT, Frech R (2010) Infrared spectroscopic and conductivity studies of poly(N-methylpropylenimine)/lithium triflate electrolytes. Solid State Ion 180:1626–1632CrossRef Mason RN, Hu L, Glatzhofer DT, Frech R (2010) Infrared spectroscopic and conductivity studies of poly(N-methylpropylenimine)/lithium triflate electrolytes. Solid State Ion 180:1626–1632CrossRef
42.
Zurück zum Zitat Lopez-Garriga JJ, Babcock GT, Harrison JF (1986) Factors influencing the C:N stretching frequency in neutral and protonated Schiff’s base. J Am Chem Soc 108:7241–7251CrossRef Lopez-Garriga JJ, Babcock GT, Harrison JF (1986) Factors influencing the C:N stretching frequency in neutral and protonated Schiff’s base. J Am Chem Soc 108:7241–7251CrossRef
43.
Zurück zum Zitat Wang C, Shieh S, Legoff E, Kanatzidiz MG (1996) Synthesis and characterization of a new conjugated aromatic poly(azomethine) derivative based on the 3′,4′-dibutyl-α-terthiophene building block. Macromolecules 29:3147–3156CrossRef Wang C, Shieh S, Legoff E, Kanatzidiz MG (1996) Synthesis and characterization of a new conjugated aromatic poly(azomethine) derivative based on the 3′,4′-dibutyl-α-terthiophene building block. Macromolecules 29:3147–3156CrossRef
44.
Zurück zum Zitat Colladet K, Nicolas M, Goris L, Lutsen L, Vanderzande D (2004) Low-band gap polymers for photovoltaic applications. Thin Solid Films 451(452):7–11CrossRef Colladet K, Nicolas M, Goris L, Lutsen L, Vanderzande D (2004) Low-band gap polymers for photovoltaic applications. Thin Solid Films 451(452):7–11CrossRef
Metadaten
Titel
Low band gap Schiff base polymers obtained by complexation with Lewis acids
verfasst von
C. O. Sánchez
D. Huaiquimilla
P. Sobarzo
R. Abello
R. Silva
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
Polymer Bulletin / Ausgabe 3/2013
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-012-0857-0

Weitere Artikel der Ausgabe 3/2013

Polymer Bulletin 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.