Skip to main content
Erschienen in: Journal of Computational Electronics 3/2016

27.07.2016

Manipulation of structural and optical behaviors in zincblende and wurtzite mercuric sulfide (HgS) nanocrystals: atomistic tight-binding theory

verfasst von: Worasak Sukkabot

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To obtain comprehensive information regarding the effect of size and geometric structure on the associated atomistic properties of mercuric sulfide (HgS) nanocrystals, the structural and optical properties of HgS semiconductor nanocrystals were explored numerically using atomistic tight-binding theory. The optical bandgap, charge density, density of states, electron–hole Coulomb energy, and optical spectrum were evaluated for different sizes and geometric structures. Size-dependent computations were realized by changing the diameter of the HgS nanocrystals. In addition, HgS nanocrystals with wurtzite and zincblende geometric structures were compared numerically. The theoretical results highlight that control of the electronic structure and optical properties of HgS nanocrystals can be achieved by changing their size and geometric structure. The dependence of the optical bandgap on the dimension of the HgS nanocrystals is mainly determined by quantum confinement. Finally, the optical properties of zincblende HgS nanocrystals are more promising than those of wurtzite HgS nanocrystals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sapriel, J.: Cinnabar (\(\alpha \) HgS), a promising acousto-optical material. Appl. Phys. Lett. 19, 533–535 (1971)CrossRef Sapriel, J.: Cinnabar (\(\alpha \) HgS), a promising acousto-optical material. Appl. Phys. Lett. 19, 533–535 (1971)CrossRef
2.
Zurück zum Zitat Higginson, K.A., Kuno, M., Bonevich, J., Qadri, S.B., Yousuf, M., Mattoussi, H.: Synthesis and characterization of colloidal \(\beta \)-HgS quantum dots. J. Phys. Chem. B 106, 9982–9985 (2002)CrossRef Higginson, K.A., Kuno, M., Bonevich, J., Qadri, S.B., Yousuf, M., Mattoussi, H.: Synthesis and characterization of colloidal \(\beta \)-HgS quantum dots. J. Phys. Chem. B 106, 9982–9985 (2002)CrossRef
3.
Zurück zum Zitat Chakraborty, I., Mitra, D., Moulik, S.P.: Spectroscopic studies on nanodispersions of CdS, HgS, their core–shells and composites prepared in micellar medium. J. Nanopart. Res. 7, 227–236 (2005)CrossRef Chakraborty, I., Mitra, D., Moulik, S.P.: Spectroscopic studies on nanodispersions of CdS, HgS, their core–shells and composites prepared in micellar medium. J. Nanopart. Res. 7, 227–236 (2005)CrossRef
4.
Zurück zum Zitat Kershaw, S.V., Harrison, M., Rogach, A.L., Kornowski, A.: Development of IR-emitting colloidal II–VI quantum-dot materials. IEEE J. Sel. Top. Quantum Electron. 6, 534–543 (2000)CrossRef Kershaw, S.V., Harrison, M., Rogach, A.L., Kornowski, A.: Development of IR-emitting colloidal II–VI quantum-dot materials. IEEE J. Sel. Top. Quantum Electron. 6, 534–543 (2000)CrossRef
5.
Zurück zum Zitat Roberts, G.G., Lind, E.L., Davis, E.A.: Photoelectronic properties of synthetic mercury sulphide crystals. J. Phys. Chem. Solids 30, 833–844 (1969)CrossRef Roberts, G.G., Lind, E.L., Davis, E.A.: Photoelectronic properties of synthetic mercury sulphide crystals. J. Phys. Chem. Solids 30, 833–844 (1969)CrossRef
6.
Zurück zum Zitat Mahapatra, A.K., Dash, A.K.: \(\alpha \)-HgS nanocrystals: synthesis, structure and optical properties. Phys. E 35, 9–15 (2006)CrossRef Mahapatra, A.K., Dash, A.K.: \(\alpha \)-HgS nanocrystals: synthesis, structure and optical properties. Phys. E 35, 9–15 (2006)CrossRef
7.
Zurück zum Zitat Xu, X., Carraway, E.R.: Sonication-assisted synthesis of \(\beta \)-mercuric sulfide nanoparticles. Nanomater. Nanotechnol. 2, 17–22 (2012) Xu, X., Carraway, E.R.: Sonication-assisted synthesis of \(\beta \)-mercuric sulfide nanoparticles. Nanomater. Nanotechnol. 2, 17–22 (2012)
8.
Zurück zum Zitat Onwudiwe, D.C., Ajibade, A.: ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int. J. Mol. Sci. 12, 5538–5551 (2011)CrossRef Onwudiwe, D.C., Ajibade, A.: ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int. J. Mol. Sci. 12, 5538–5551 (2011)CrossRef
9.
Zurück zum Zitat Ding, T., Zhu, J.-J.: Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent. Mater. Sci. Eng. B 100, 307–313 (2003)CrossRef Ding, T., Zhu, J.-J.: Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent. Mater. Sci. Eng. B 100, 307–313 (2003)CrossRef
10.
Zurück zum Zitat Han, L., Hou, P., Feng, Y., Liu, H., Li, J., Peng, Z., Yang, J.: Phase transfer-based synthesis of HgS nanocrystals. Dalton Trans. 43, 11981–11987 (2014)CrossRef Han, L., Hou, P., Feng, Y., Liu, H., Li, J., Peng, Z., Yang, J.: Phase transfer-based synthesis of HgS nanocrystals. Dalton Trans. 43, 11981–11987 (2014)CrossRef
11.
Zurück zum Zitat Hemdana, I., Mahdouani, M., Bourguiga, R.: Investigation of the radiative lifetime in core–shell CdSe/ZnS and CdSe/ZnSe quantum dots. Phys. B 407, 3313–3319 (2012)CrossRefMATH Hemdana, I., Mahdouani, M., Bourguiga, R.: Investigation of the radiative lifetime in core–shell CdSe/ZnS and CdSe/ZnSe quantum dots. Phys. B 407, 3313–3319 (2012)CrossRefMATH
12.
Zurück zum Zitat Williamson, A.J., Zunger, A.: Pseudopotential study of electron-hole excitations in colloidal free-standing InAs quantum dots. Phys. Rev. B. 61, 1978–1991 (2000)CrossRef Williamson, A.J., Zunger, A.: Pseudopotential study of electron-hole excitations in colloidal free-standing InAs quantum dots. Phys. Rev. B. 61, 1978–1991 (2000)CrossRef
13.
Zurück zum Zitat Wang, L.W., Zunger, A.: Electronic structure pseudopotential calculations of large (.apprx.1000 atoms) Si quantum dots. J. Phys. Chem. 98, 2158–2165 (1994)CrossRef Wang, L.W., Zunger, A.: Electronic structure pseudopotential calculations of large (.apprx.1000 atoms) Si quantum dots. J. Phys. Chem. 98, 2158–2165 (1994)CrossRef
14.
Zurück zum Zitat Leung, K., Whaley, K.B.: Electron-hole interactions in silicon nanocrystals. Phys. Rev. B. 56, 7455–7468 (1997)CrossRef Leung, K., Whaley, K.B.: Electron-hole interactions in silicon nanocrystals. Phys. Rev. B. 56, 7455–7468 (1997)CrossRef
15.
Zurück zum Zitat Niquet, Y.M., Delerue, C., Lannoo, M., Allan, G.: Single-particle tunneling in semiconductor quantum dots. Phys. Rev. B 64, 113305–113308 (2001)CrossRef Niquet, Y.M., Delerue, C., Lannoo, M., Allan, G.: Single-particle tunneling in semiconductor quantum dots. Phys. Rev. B 64, 113305–113308 (2001)CrossRef
16.
Zurück zum Zitat Luo, Y., Wang, L.-W.: Electronic structures of the CdSe/CdS core–shell nanorods. ACS Nano 4(1), 91–98 (2010)CrossRef Luo, Y., Wang, L.-W.: Electronic structures of the CdSe/CdS core–shell nanorods. ACS Nano 4(1), 91–98 (2010)CrossRef
17.
Zurück zum Zitat Yang, S., Prendergast, D., Neaton, J.B.: Strain-induced band gap modification in coherent core/shell nanostructures. Nano Lett. 10(8), 3156–3162 (2010)CrossRef Yang, S., Prendergast, D., Neaton, J.B.: Strain-induced band gap modification in coherent core/shell nanostructures. Nano Lett. 10(8), 3156–3162 (2010)CrossRef
18.
Zurück zum Zitat Khoo, K.H., Arantes, J.T., Chelikowsky, J.R., Dalpian, G.M.: First-principles calculations of lattice-strained core–shell nanocrystals. Phys. Rev. B 84, 075311–075317 (2011)CrossRef Khoo, K.H., Arantes, J.T., Chelikowsky, J.R., Dalpian, G.M.: First-principles calculations of lattice-strained core–shell nanocrystals. Phys. Rev. B 84, 075311–075317 (2011)CrossRef
19.
Zurück zum Zitat Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)CrossRef Vogl, P., Hjalmarson, H.P., Dow, J.D.: A Semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids 44, 365–378 (1983)CrossRef
20.
Zurück zum Zitat Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)CrossRef Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)CrossRef
21.
Zurück zum Zitat Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316–045323 (2004)CrossRef Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent embedded semiconductor nanostructures. Phys. Rev. B 69, 045316–045323 (2004)CrossRef
22.
Zurück zum Zitat Sukkabot, W.: Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: tight-binding calculations. Phys. E Low Dimens. Syst. Nanostruct. 63, 235–240 (2014)CrossRef Sukkabot, W.: Electronic structure and optical properties of colloidal InAs/InP core/shell nanocrystals: tight-binding calculations. Phys. E Low Dimens. Syst. Nanostruct. 63, 235–240 (2014)CrossRef
23.
Zurück zum Zitat Sukkabot, W.: Influence of ZnSe core on the structural and optical properties of ZnSe/ZnS core/shell nanocrystals: tight-binding theory. Superlattices Microstruct. 75, 739–748 (2014)CrossRef Sukkabot, W.: Influence of ZnSe core on the structural and optical properties of ZnSe/ZnS core/shell nanocrystals: tight-binding theory. Superlattices Microstruct. 75, 739–748 (2014)CrossRef
24.
Zurück zum Zitat Sukkabot, W.: Tight-binding theory of the excitonic states in colloidal InSb nanostructures. Mater. Sci. Semicond. Process. 27, 51–55 (2014)CrossRef Sukkabot, W.: Tight-binding theory of the excitonic states in colloidal InSb nanostructures. Mater. Sci. Semicond. Process. 27, 51–55 (2014)CrossRef
25.
Zurück zum Zitat Sukkabot, W.: Atomistic tight-binding theory in CdSe/ZnSe wurtzite core/shell nanocrystals. Comput. Mater. Sci. 96, 336–341 (2014)CrossRef Sukkabot, W.: Atomistic tight-binding theory in CdSe/ZnSe wurtzite core/shell nanocrystals. Comput. Mater. Sci. 96, 336–341 (2014)CrossRef
26.
Zurück zum Zitat Sukkabot, W.: Role of structural and compositional details in atomistic tight-binding calculations for InN nanocrystals. Mater. Sci. Semicond. Process. 38, 142–148 (2015)CrossRef Sukkabot, W.: Role of structural and compositional details in atomistic tight-binding calculations for InN nanocrystals. Mater. Sci. Semicond. Process. 38, 142–148 (2015)CrossRef
27.
Zurück zum Zitat Sukkabot, W.: Structural properties of SiC zinc-blende and wurtzite nanostructures: atomistic tight-binding theory. Mater. Sci. Semicond. Process. 40, 117–122 (2015)CrossRef Sukkabot, W.: Structural properties of SiC zinc-blende and wurtzite nanostructures: atomistic tight-binding theory. Mater. Sci. Semicond. Process. 40, 117–122 (2015)CrossRef
28.
Zurück zum Zitat Korkusinski, M., Voznyy, O., Hawrylak, P.: Fine structure and size dependence of exciton and biexciton optical spectra in CdSe nanocrystals. Phys. Rev. B 82, 245304–245319 (2010)CrossRef Korkusinski, M., Voznyy, O., Hawrylak, P.: Fine structure and size dependence of exciton and biexciton optical spectra in CdSe nanocrystals. Phys. Rev. B 82, 245304–245319 (2010)CrossRef
29.
Zurück zum Zitat Bryant, G.W., Jaskólski, W.: Tight-binding theory of quantum-dot quantum wells: single-particle effects and near-band-edge structure. Phys. Rev. B 67, 205320–205336 (2003)CrossRef Bryant, G.W., Jaskólski, W.: Tight-binding theory of quantum-dot quantum wells: single-particle effects and near-band-edge structure. Phys. Rev. B 67, 205320–205336 (2003)CrossRef
30.
Zurück zum Zitat Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)CrossRefMATH Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)CrossRefMATH
31.
Zurück zum Zitat Svane, A., Christensen, N.E., Cardona, M., Chantis, A.N., van Schilfgaarde, M., Kotani, T.: Quasiparticle band structures of \(\beta \)-HgS, HgSe, and HgTe. Phys. Rev. B 84, 205205–205210 (2011)CrossRef Svane, A., Christensen, N.E., Cardona, M., Chantis, A.N., van Schilfgaarde, M., Kotani, T.: Quasiparticle band structures of \(\beta \)-HgS, HgSe, and HgTe. Phys. Rev. B 84, 205205–205210 (2011)CrossRef
32.
Zurück zum Zitat Moon, C.-Y., Wei, S.-H.: Band gap of Hg chalcogenides: symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys. Rev. B 74, 045205–045209 (2006)CrossRef Moon, C.-Y., Wei, S.-H.: Band gap of Hg chalcogenides: symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys. Rev. B 74, 045205–045209 (2006)CrossRef
Metadaten
Titel
Manipulation of structural and optical behaviors in zincblende and wurtzite mercuric sulfide (HgS) nanocrystals: atomistic tight-binding theory
verfasst von
Worasak Sukkabot
Publikationsdatum
27.07.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0873-7

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Electronics 3/2016 Zur Ausgabe

Neuer Inhalt