Skip to main content
Erschienen in: Quantum Information Processing 4/2021

01.04.2021

Measurement-device-independent mutual quantum entity authentication

verfasst von: Ji-Woong Choi, Min-Sung Kang, Chang Hoon Park, Hyung-Jin Yang, Sang-Wook Han

Erschienen in: Quantum Information Processing | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum entity authentication (QEA) based on security guaranteed by the laws of physics is the first and most important step for secure communication under the threat of a quantum adversary. QEA theoretically provides unconditional security; however, there is a threat of quantum hacking owing to imperfection of measurement devices in the actual implementation. The proposed measurement-device-independent (MDI) mutual quantum entity authentication (MQEA) scheme guarantees its security under any quantum attacks on measuring devices that have been reported. Using the MDI architecture in our scheme, the third party can only know the correlation of the transmitted qubits through the Bell state measurement, and it cannot obtain the secret key information. In order to confirm the security of the proposed scheme, we present a security analysis of secret key information that is pre-shared among legitimate users, and we analyze Eve’s impersonation attack. Furthermore, we compare the MDI MQEA with other existing QEA schemes

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62(2), 022305 (2000)ADSCrossRef Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62(2), 022305 (2000)ADSCrossRef
2.
Zurück zum Zitat Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254(4–6), 380–388 (2005)ADSCrossRef Zhou, N., Zeng, G., Zeng, W., Zhu, F.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254(4–6), 380–388 (2005)ADSCrossRef
3.
Zurück zum Zitat Shi, W.-M., Zhou, Y.-H., Yang, Y.-G.: Quantum deniable authentication protocol. Quantum Inf. Process. 13(7), 1501–1510 (2014)ADSMathSciNetCrossRef Shi, W.-M., Zhou, Y.-H., Yang, Y.-G.: Quantum deniable authentication protocol. Quantum Inf. Process. 13(7), 1501–1510 (2014)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Kang, M.-S., Hong, C.-H., Heo, J., Lim, J.-I., Yang, H.-J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24(9), 090306 (2015)CrossRef Kang, M.-S., Hong, C.-H., Heo, J., Lim, J.-I., Yang, H.-J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24(9), 090306 (2015)CrossRef
5.
Zurück zum Zitat Huang, W., Xu, B.-J., Duan, J.-T., Liu, B., Su, Q., He, Y.-H., Jia, H.-Y.: Authenticated quantum key distribution with collective detection using single photons. Int. J. Theor. Phys. 55(10), 4238–4256 (2016)CrossRef Huang, W., Xu, B.-J., Duan, J.-T., Liu, B., Su, Q., He, Y.-H., Jia, H.-Y.: Authenticated quantum key distribution with collective detection using single photons. Int. J. Theor. Phys. 55(10), 4238–4256 (2016)CrossRef
6.
Zurück zum Zitat Hong, C.-h, Heo, J., Jang, J.-G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236 (2017)ADSMathSciNetCrossRef Hong, C.-h, Heo, J., Jang, J.-G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236 (2017)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Kang, M.-S., Heo, J., Hong, C.-h, Yang, H.-J., Han, S.-W., Moon, S.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process. 17(7), 159 (2018)ADSMathSciNetCrossRef Kang, M.-S., Heo, J., Hong, C.-h, Yang, H.-J., Han, S.-W., Moon, S.: Controlled mutual quantum entity authentication with an untrusted third party. Quantum Inf. Process. 17(7), 159 (2018)ADSMathSciNetCrossRef
8.
Zurück zum Zitat Wang, Q., Zhang, S., Wang, S.-l, Shi, R.-h: Comment on “controlled mutual quantum entity authentication with an untrusted third party.” Quantum Inf. Process. 19(4), 125 (2020)ADSMathSciNetCrossRef Wang, Q., Zhang, S., Wang, S.-l, Shi, R.-h: Comment on “controlled mutual quantum entity authentication with an untrusted third party.” Quantum Inf. Process. 19(4), 125 (2020)ADSMathSciNetCrossRef
9.
Zurück zum Zitat Kang, M.-S., Heo, J., Hong, C.-h, Yang, H.-J., Han, M.S., Moon, S., Han, S.-W.: Response to “comment on ‘controlled mutual quantum entity authentication with an untrusted third party.’” Quantum Inf. Process. 19(4), 124 (2020)ADSMathSciNetCrossRef Kang, M.-S., Heo, J., Hong, C.-h, Yang, H.-J., Han, M.S., Moon, S., Han, S.-W.: Response to “comment on ‘controlled mutual quantum entity authentication with an untrusted third party.’” Quantum Inf. Process. 19(4), 124 (2020)ADSMathSciNetCrossRef
10.
Zurück zum Zitat Choi, J.-W., Kang, M.-S., Heo, J., Hong, C.-h, Yoon, C.-S., Han, S.-W., Moon, S., Yang, H.-J.: Quantum challenge-response identification using single qubit unitary operators. Physica Scr. 95(10), 105104 (2020)ADSCrossRef Choi, J.-W., Kang, M.-S., Heo, J., Hong, C.-h, Yoon, C.-S., Han, S.-W., Moon, S., Yang, H.-J.: Quantum challenge-response identification using single qubit unitary operators. Physica Scr. 95(10), 105104 (2020)ADSCrossRef
11.
Zurück zum Zitat Zhang, S., et al.: A novel quantum identity authentication based on Bell states. Int. J. Theor. Phys. 59(1), 236–249 (2020)MathSciNetCrossRef Zhang, S., et al.: A novel quantum identity authentication based on Bell states. Int. J. Theor. Phys. 59(1), 236–249 (2020)MathSciNetCrossRef
12.
Zurück zum Zitat Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74(2), 022313 (2006)ADSCrossRef Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74(2), 022313 (2006)ADSCrossRef
13.
Zurück zum Zitat Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686 (2010)ADSCrossRef Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686 (2010)ADSCrossRef
14.
Zurück zum Zitat Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)ADSCrossRef Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 349 (2011)ADSCrossRef
15.
Zurück zum Zitat Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)ADSCrossRef Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)ADSCrossRef
16.
Zurück zum Zitat Weier, H., Krauss, H., Rau, M., Fürst, M., Nauerth, S., Weinfurter, H.: Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors. New J. Phys. 13(7), 073024 (2011)ADSCrossRef Weier, H., Krauss, H., Rau, M., Fürst, M., Nauerth, S., Weinfurter, H.: Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors. New J. Phys. 13(7), 073024 (2011)ADSCrossRef
17.
Zurück zum Zitat Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13(1), 013043 (2011)ADSCrossRef Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13(1), 013043 (2011)ADSCrossRef
18.
Zurück zum Zitat Bugge, A.N., Sauge, S., Ghazali, A.M.M., Skaar, J., Lydersen, L., Makarov, V.: Laser damage helps the eavesdropper in quantum cryptography. Phys. Rev. Lett. 112(7), 070503 (2014)ADSCrossRef Bugge, A.N., Sauge, S., Ghazali, A.M.M., Skaar, J., Lydersen, L., Makarov, V.: Laser damage helps the eavesdropper in quantum cryptography. Phys. Rev. Lett. 112(7), 070503 (2014)ADSCrossRef
19.
Zurück zum Zitat Makarov, V., Bourgoin, J.-P., Chaiwongkhot, P., Gagné, M., Jennewein, T., Kaiser, S., Kashyap, R., Legré, M., Minshull, C., Sajeed, S.: Creation of backdoors in quantum communications via laser damage. Phys. Rev. A 94(3), 030302 (2016)ADSCrossRef Makarov, V., Bourgoin, J.-P., Chaiwongkhot, P., Gagné, M., Jennewein, T., Kaiser, S., Kashyap, R., Legré, M., Minshull, C., Sajeed, S.: Creation of backdoors in quantum communications via laser damage. Phys. Rev. A 94(3), 030302 (2016)ADSCrossRef
20.
Zurück zum Zitat Lee, M.-S., Woo, M.-K., Jung, J., Kim, Y.-S., Han, S.-W., Moon, S.: Free-space QKD system hacking by wavelength control using an external laser. Opt. Express 25(10), 11124–11131 (2017)ADSCrossRef Lee, M.-S., Woo, M.-K., Jung, J., Kim, Y.-S., Han, S.-W., Moon, S.: Free-space QKD system hacking by wavelength control using an external laser. Opt. Express 25(10), 11124–11131 (2017)ADSCrossRef
21.
Zurück zum Zitat Lee, M.-S., Woo, M.-K., Kim, Y.-S., Cho, Y.-W., Han, S.-W., Moon, S.: Quantum hacking on a free-space quantum key distribution system without measuring quantum signals. JOSA B 36(3), B77–B82 (2019)CrossRef Lee, M.-S., Woo, M.-K., Kim, Y.-S., Cho, Y.-W., Han, S.-W., Moon, S.: Quantum hacking on a free-space quantum key distribution system without measuring quantum signals. JOSA B 36(3), B77–B82 (2019)CrossRef
22.
Zurück zum Zitat Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRef Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRef
23.
Zurück zum Zitat Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94(2), 022328 (2016)ADSMathSciNetCrossRef Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A 94(2), 022328 (2016)ADSMathSciNetCrossRef
24.
Zurück zum Zitat Tang, Y.-L., Yin, H.-L., Zhao, Q., Liu, H., Sun, X.-X., Huang, M.-Q., Zhang, W.-J., Chen, S.-J., Zhang, L., You, L.-X.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011024 (2016) Tang, Y.-L., Yin, H.-L., Zhao, Q., Liu, H., Sun, X.-X., Huang, M.-Q., Zhang, W.-J., Chen, S.-J., Zhang, L., You, L.-X.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6(1), 011024 (2016)
25.
Zurück zum Zitat Choi, Y.-j, Kwon, O.-s, Woo, M.-K., Oh, K.-h, Han, S.-W., Kim, Y.-S., Moon, S.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93(3), 032319 (2016)ADSCrossRef Choi, Y.-j, Kwon, O.-s, Woo, M.-K., Oh, K.-h, Han, S.-W., Kim, Y.-S., Moon, S.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93(3), 032319 (2016)ADSCrossRef
26.
Zurück zum Zitat Roberts, G., Lucamarini, M., Yuan, Z., Dynes, J., Comandar, L., Sharpe, A., Shields, A., Curty, M., Puthoor, I., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8(1), 1–7 (2017)CrossRef Roberts, G., Lucamarini, M., Yuan, Z., Dynes, J., Comandar, L., Sharpe, A., Shields, A., Curty, M., Puthoor, I., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8(1), 1–7 (2017)CrossRef
28.
Zurück zum Zitat Park, Ch., Woo, M.K., Park, B.K., Lee, M.S., Kim, Y.-S., Cho, Y.-W., Kim, Y.-S., Han, S.-W., Moon, S.: Practical plug-and-play measurement-device-independent quantum key distribution with polarization division multiplexing. IEEE Access 6, 58587–58593 (2018)CrossRef Park, Ch., Woo, M.K., Park, B.K., Lee, M.S., Kim, Y.-S., Cho, Y.-W., Kim, Y.-S., Han, S.-W., Moon, S.: Practical plug-and-play measurement-device-independent quantum key distribution with polarization division multiplexing. IEEE Access 6, 58587–58593 (2018)CrossRef
29.
Zurück zum Zitat Niu, P.-H., Zhou, Z.-R., Lin, Z.-S., Sheng, Y.-B., Yin, L.-G., Long, G.-L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)CrossRef Niu, P.-H., Zhou, Z.-R., Lin, Z.-S., Sheng, Y.-B., Yin, L.-G., Long, G.-L.: Measurement-device-independent quantum communication without encryption. Sci. Bull. 63(20), 1345–1350 (2018)CrossRef
30.
Zurück zum Zitat Liang, W., Xue, Q., Jiao, R.: The performance of three-intensity decoy-state measurement-device-independent quantum key distribution. Quantum Inf. Process. 19, 1–9 (2020)MathSciNetCrossRef Liang, W., Xue, Q., Jiao, R.: The performance of three-intensity decoy-state measurement-device-independent quantum key distribution. Quantum Inf. Process. 19, 1–9 (2020)MathSciNetCrossRef
31.
Zurück zum Zitat Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf. Comput. 7(5 & 6), 431–458 (2007)MathSciNetMATH Lo, H.-K., Preskill, J.: Security of quantum key distribution using weak coherent states with nonrandom phases. Quantum Inf. Comput. 7(5 & 6), 431–458 (2007)MathSciNetMATH
32.
Zurück zum Zitat Divochiy, A., et al.: Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photonics 2(5), 302–306 (2008)CrossRef Divochiy, A., et al.: Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths. Nat. Photonics 2(5), 302–306 (2008)CrossRef
33.
Zurück zum Zitat Kardynał, B.E., Yuan, Z.L., Shields, A.J.: An avalanche-photodiode-based photon-number-resolving detector. Nat. Photon. 2(7), 425–428 (2008)CrossRef Kardynał, B.E., Yuan, Z.L., Shields, A.J.: An avalanche-photodiode-based photon-number-resolving detector. Nat. Photon. 2(7), 425–428 (2008)CrossRef
34.
Zurück zum Zitat Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135 (2007)ADSCrossRef Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135 (2007)ADSCrossRef
35.
Zurück zum Zitat Kok, P.: Photonic quantum information processing. Contemp. Phys. 57(4), 526–544 (2016)ADSCrossRef Kok, P.: Photonic quantum information processing. Contemp. Phys. 57(4), 526–544 (2016)ADSCrossRef
Metadaten
Titel
Measurement-device-independent mutual quantum entity authentication
verfasst von
Ji-Woong Choi
Min-Sung Kang
Chang Hoon Park
Hyung-Jin Yang
Sang-Wook Han
Publikationsdatum
01.04.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 4/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03093-1

Weitere Artikel der Ausgabe 4/2021

Quantum Information Processing 4/2021 Zur Ausgabe

Neuer Inhalt