Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2016

31.05.2016

Mechanical Behavior and Microstructural Analysis of Extruded AZ31B Magnesium Alloy Processed by Backward Extrusion

verfasst von: Ping Zhou, Elmar Beeh, Horst E. Friedrich, Thomas Grünheid

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the mechanical behavior of an extruded AZ31B magnesium alloy profile at various strain rates from 0.001 to 375/s. The electron backscatter diffraction analysis revealed that the profile has \(\left\{ { 0 0 0 1} \right\}\langle 1 0\overline{1} 0 \rangle\) and \(\{ {1 0\overline{1} 0 }\}\langle { 1 1\overline{2} 0}\rangle\) textures. Due to the textures, the profile exhibits pronounced anisotropy in mechanical properties. In the extrusion direction (ED), the profile shows the highest yield strength (YS) but the lowest total elongation at fracture (TE) due to a hard activation of non-basal slip and \(\{ { 1 0\overline{1} 1} \}\langle { 1 0\overline{1} \overline{2} } \rangle\) twinning; in the diagonal direction (DD), it shows the lowest ultimate tensile strength (UTS) but the highest TE due to an easy activation of basal slip; in the transverse direction (TD), it shows the lowest YS due to an easy activation of \(\{ {10\overline{1} 2} \}\langle {10\overline{1} \overline{1} } \rangle\) twinning. Moreover, the number of twins increases with the increasing strain rate. This indicates that deformation twinning becomes prevalent to accommodate high-rate deformation. Due to the different deformation mechanisms, the profile exhibits an orientation-dependent effect of strain rate on the mechanical properties. A positive effect of strain rate on the YS and UTS was found in the ED, while the effect of strain rate on the YS is negligible in the DD and TD. The TE in the ED, DD, and TD decreases in general as the strain rate increases. Fractographic analysis under a scanning electron microscope revealed that the fracture is a mixed mode of ductile and brittle fracture, and the magnesium oxide inclusions could be the origins of the fracture.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.E. Friedrich and B.L. Mordike, Ed., Magnesium Technology—Metallurgy, Design Data, Applications, Springer-Verlag, Heidelberg, 2006 H.E. Friedrich and B.L. Mordike, Ed., Magnesium Technology—Metallurgy, Design Data, Applications, Springer-Verlag, Heidelberg, 2006
2.
Zurück zum Zitat A.A. Luo, Applications: aerospace, automotive and other structural applications of magnesium, Fundamentals of Magnesium Alloy Metallurgy, M.O. Pekguleryuz, K.U. Kainer, and A.A. Kaya, Ed., Woodhead Publishing Limited, London, 2013, p 266–316 CrossRef A.A. Luo, Applications: aerospace, automotive and other structural applications of magnesium, Fundamentals of Magnesium Alloy Metallurgy, M.O. Pekguleryuz, K.U. Kainer, and A.A. Kaya, Ed., Woodhead Publishing Limited, London, 2013, p 266–316 CrossRef
3.
Zurück zum Zitat J.H. Forsmark, M. Li, X. Su, D.A. Wagner, J. Zindel, A.A. Luo, J.F. Quinn, R. Verma, Y.-M. Wang, S.D. Logan, S. Bilkhu, and R.C. McCune, The USAMP Magnesium Front End Research and Development Project—Results of the Magnesium “Demonstration” Structure, Magnesium Technology, Wiley, Hoboken, 2014, p 517–524 J.H. Forsmark, M. Li, X. Su, D.A. Wagner, J. Zindel, A.A. Luo, J.F. Quinn, R. Verma, Y.-M. Wang, S.D. Logan, S. Bilkhu, and R.C. McCune, The USAMP Magnesium Front End Research and Development Project—Results of the Magnesium “Demonstration” Structure, Magnesium Technology, Wiley, Hoboken, 2014, p 517–524
4.
Zurück zum Zitat A. Parrish, M. Rais-Rohani, and A. Najafi, Crashworthiness Optimisation of Vehicle Structures with Magnesium Alloy Parts, Int. J. Crashworthiness, 2012, 17(3), p 259–281CrossRef A. Parrish, M. Rais-Rohani, and A. Najafi, Crashworthiness Optimisation of Vehicle Structures with Magnesium Alloy Parts, Int. J. Crashworthiness, 2012, 17(3), p 259–281CrossRef
5.
Zurück zum Zitat P. Zhou, E. Beeh, H.E. Friedrich, M. Kriescher, P. Straßburger, M. Holzapfel, H. Kraft, C. Rieger, K. Oswald, and J. Roettger, Bending Collapse Behaviour of Polyurethane Foam-Filled Rectangular Magnesium Alloy AZ31B Tubes, Mater. Sci. Forum, 2015, 828-829, p 259–264CrossRef P. Zhou, E. Beeh, H.E. Friedrich, M. Kriescher, P. Straßburger, M. Holzapfel, H. Kraft, C. Rieger, K. Oswald, and J. Roettger, Bending Collapse Behaviour of Polyurethane Foam-Filled Rectangular Magnesium Alloy AZ31B Tubes, Mater. Sci. Forum, 2015, 828-829, p 259–264CrossRef
6.
Zurück zum Zitat D. Ghaffari Tari, M.J. Worswick, U. Ali, and M.A. Gharghouri, Mechanical Response of AZ31B Magnesium Alloy: Experimental Characterization and Material Modeling Considering Proportional Loading at Room Temperature, Int. J. Plast., 2014, 55, p 247–267CrossRef D. Ghaffari Tari, M.J. Worswick, U. Ali, and M.A. Gharghouri, Mechanical Response of AZ31B Magnesium Alloy: Experimental Characterization and Material Modeling Considering Proportional Loading at Room Temperature, Int. J. Plast., 2014, 55, p 247–267CrossRef
7.
Zurück zum Zitat N.-T. Nguyen, O. Seo, C. Lee, M.-G. Lee, J.-H. Kim, and H. Kim, Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures, Materials, 2014, 7(2), p 1271–1295CrossRef N.-T. Nguyen, O. Seo, C. Lee, M.-G. Lee, J.-H. Kim, and H. Kim, Mechanical Behavior of AZ31B Mg Alloy Sheets under Monotonic and Cyclic Loadings at Room and Moderately Elevated Temperatures, Materials, 2014, 7(2), p 1271–1295CrossRef
8.
Zurück zum Zitat D. Steglich, X. Tian, J. Bohlen, and T. Kuwabara, Mechanical Testing of Thin Sheet Magnesium Alloys in Biaxial Tension and Uniaxial Compression, Exp. Mech., 2014, 54(7), p 1247–1258CrossRef D. Steglich, X. Tian, J. Bohlen, and T. Kuwabara, Mechanical Testing of Thin Sheet Magnesium Alloys in Biaxial Tension and Uniaxial Compression, Exp. Mech., 2014, 54(7), p 1247–1258CrossRef
9.
Zurück zum Zitat T. Mukai, M. Yamanoi, and K. Higashi, Processing of Ductile Magnesium Alloy under Dynamic Tensile Loading, Mater. Trans., 2001, 42(12), p 2652–2654CrossRef T. Mukai, M. Yamanoi, and K. Higashi, Processing of Ductile Magnesium Alloy under Dynamic Tensile Loading, Mater. Trans., 2001, 42(12), p 2652–2654CrossRef
10.
Zurück zum Zitat E. El-Magd and M. Abouridouane, Characterization, Modelling and Simulation of Deformation and Fracture Behaviour of the Light-Weight Wrought Alloys Under High Strain Rate Loading, Int. J. Impact Eng., 2006, 32(5), p 741–758CrossRef E. El-Magd and M. Abouridouane, Characterization, Modelling and Simulation of Deformation and Fracture Behaviour of the Light-Weight Wrought Alloys Under High Strain Rate Loading, Int. J. Impact Eng., 2006, 32(5), p 741–758CrossRef
11.
Zurück zum Zitat X.Z. Lin and D.L. Chen, Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy, J. Mater. Eng. Perform., 2008, 17(6), p 894–901CrossRef X.Z. Lin and D.L. Chen, Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Alloy, J. Mater. Eng. Perform., 2008, 17(6), p 894–901CrossRef
12.
Zurück zum Zitat A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Mechanical Response and Texture Evolution of AZ31 Alloy at Large Strains for Different Strain Rates and Temperatures, Int. J. Plast., 2011, 27(5), p 688–706CrossRef A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Mechanical Response and Texture Evolution of AZ31 Alloy at Large Strains for Different Strain Rates and Temperatures, Int. J. Plast., 2011, 27(5), p 688–706CrossRef
13.
Zurück zum Zitat F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, D. Wu, and Z. Yang, Experimental Study on Tensile Property of AZ31B Magnesium Alloy at Different High Strain Rates and Temperatures, Mater. Des., 2014, 57(5), p 10–20CrossRef F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, D. Wu, and Z. Yang, Experimental Study on Tensile Property of AZ31B Magnesium Alloy at Different High Strain Rates and Temperatures, Mater. Des., 2014, 57(5), p 10–20CrossRef
14.
Zurück zum Zitat S. Kurukuri, M.J. Worswick, D. Ghaffari Tari, R.K. Mishra, and J.T. Carter, Rate Sensitivity and Tension-Compression Asymmetry in AZ31B Magnesium Alloy Sheet, Philos. Trans. R. Soc. A, 2014, 372, p 20130216CrossRef S. Kurukuri, M.J. Worswick, D. Ghaffari Tari, R.K. Mishra, and J.T. Carter, Rate Sensitivity and Tension-Compression Asymmetry in AZ31B Magnesium Alloy Sheet, Philos. Trans. R. Soc. A, 2014, 372, p 20130216CrossRef
15.
Zurück zum Zitat H. Asgari, A.G. Odeshi, J.A. Szpunar, L.J. Zeng, and E. Olsson, Grain Size Dependence of Dynamic Mechanical Behavior of AZ31B Magnesium Alloy Sheet Under Compressive Shock Loading, Mater. Charact., 2015, 106, p 359–367CrossRef H. Asgari, A.G. Odeshi, J.A. Szpunar, L.J. Zeng, and E. Olsson, Grain Size Dependence of Dynamic Mechanical Behavior of AZ31B Magnesium Alloy Sheet Under Compressive Shock Loading, Mater. Charact., 2015, 106, p 359–367CrossRef
16.
Zurück zum Zitat C. Geng, B. Wu, F. Liu, W. Tong, and Z. Han, Dynamic Tensile Behavior of AZ31B Magnesium Alloy at Ultra-High Strain Rates, Chin. J. Aeronaut., 2015, 28(2), p 593–599CrossRef C. Geng, B. Wu, F. Liu, W. Tong, and Z. Han, Dynamic Tensile Behavior of AZ31B Magnesium Alloy at Ultra-High Strain Rates, Chin. J. Aeronaut., 2015, 28(2), p 593–599CrossRef
17.
Zurück zum Zitat I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado, Mechanical Behavior and Microstructural Evolution of a Mg AZ31 Sheet at Dynamic Strain Rates, Acta Mater., 2010, 58(8), p 2988–2998CrossRef I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado, Mechanical Behavior and Microstructural Evolution of a Mg AZ31 Sheet at Dynamic Strain Rates, Acta Mater., 2010, 58(8), p 2988–2998CrossRef
18.
Zurück zum Zitat I. Ulacia, C.P. Salisbury, I. Hurtado, and M.J. Worswick, Tensile Characterization and Constitutive Modeling of AZ31B Magnesium Alloy Sheet over Wide Range of Strain Rates and Temperatures, J. Mater. Process. Technol., 2011, 211(5), p 830–839CrossRef I. Ulacia, C.P. Salisbury, I. Hurtado, and M.J. Worswick, Tensile Characterization and Constitutive Modeling of AZ31B Magnesium Alloy Sheet over Wide Range of Strain Rates and Temperatures, J. Mater. Process. Technol., 2011, 211(5), p 830–839CrossRef
19.
Zurück zum Zitat G. Wan, B.L. Wu, Y.D. Zhang, G.Y. Sha, and C. Esling, Anisotropy of Dynamic Behavior of Extruded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(12), p 2915–2924CrossRef G. Wan, B.L. Wu, Y.D. Zhang, G.Y. Sha, and C. Esling, Anisotropy of Dynamic Behavior of Extruded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527(12), p 2915–2924CrossRef
20.
Zurück zum Zitat F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, and Z. Yang, A Constitutive and Fracture Model for AZ31B Magnesium Alloy in the Tensile State, Mater. Sci. Eng. A, 2014, 594(4), p 334–343CrossRef F. Feng, S. Huang, Z. Meng, J. Hu, Y. Lei, M. Zhou, and Z. Yang, A Constitutive and Fracture Model for AZ31B Magnesium Alloy in the Tensile State, Mater. Sci. Eng. A, 2014, 594(4), p 334–343CrossRef
21.
Zurück zum Zitat K. Yu, S.-T. Rui, X.-Y. Wang, R.-C. Wang, and W.-X. Li, Texture Evolution of Extruded AZ31 Magnesium Alloy Sheets, Trans. Nonferr. Met. Soc., 2009, 19(3), p 511–516CrossRef K. Yu, S.-T. Rui, X.-Y. Wang, R.-C. Wang, and W.-X. Li, Texture Evolution of Extruded AZ31 Magnesium Alloy Sheets, Trans. Nonferr. Met. Soc., 2009, 19(3), p 511–516CrossRef
22.
Zurück zum Zitat P.E. Krajewski, A. Ben-Artzy, and R.K. Mishra, Room Temperature Tensile Anisotropy of Extruded Magnesium Plates, Magnesium Technology 2010, TMS, Miner. Met. Mater. Soc., 2010, p 467–472 P.E. Krajewski, A. Ben-Artzy, and R.K. Mishra, Room Temperature Tensile Anisotropy of Extruded Magnesium Plates, Magnesium Technology 2010, TMS, Miner. Met. Mater. Soc., 2010, p 467–472
23.
Zurück zum Zitat S. Xu, W.R. Tyson, R. Bouchard, and V.Y. Gertsman, Effects of Strain Rate and Temperature on Tensile Flow Behavior and Energy Absorption of Extruded Magnesium AM30 Alloy, J. Mater. Eng. Perform., 2009, 18(8), p 1091–1101CrossRef S. Xu, W.R. Tyson, R. Bouchard, and V.Y. Gertsman, Effects of Strain Rate and Temperature on Tensile Flow Behavior and Energy Absorption of Extruded Magnesium AM30 Alloy, J. Mater. Eng. Perform., 2009, 18(8), p 1091–1101CrossRef
24.
Zurück zum Zitat S. Xu, W.R. Tyson, R. Eagleson, R. Zavadil, Z. Liu, P.L. Mao, C.Y. Wang, S.I. Hill, and A.A. Luo, Dependence of Flow Strength and Deformation Mechanisms in Common Wrought and Die Cast Magnesium Alloys on Orientation, Strain Rate and Temperature, J. Magnes. Alloys, 2013, 1(4), p 275–282CrossRef S. Xu, W.R. Tyson, R. Eagleson, R. Zavadil, Z. Liu, P.L. Mao, C.Y. Wang, S.I. Hill, and A.A. Luo, Dependence of Flow Strength and Deformation Mechanisms in Common Wrought and Die Cast Magnesium Alloys on Orientation, Strain Rate and Temperature, J. Magnes. Alloys, 2013, 1(4), p 275–282CrossRef
25.
Zurück zum Zitat L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Twinning-Induced Softening in Polycrystalline AM30 Mg Alloy at Moderate Temperatures, Scr. Mater., 2006, 54(5), p 771–775CrossRef L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Twinning-Induced Softening in Polycrystalline AM30 Mg Alloy at Moderate Temperatures, Scr. Mater., 2006, 54(5), p 771–775CrossRef
26.
Zurück zum Zitat M.R. Barnett, Twinning and Its Role in Wrought Magnesium Alloys, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, C. Bettles and M. Barnett, Ed., Woodhead Publishing Limited, London, 2012, p 105–143 CrossRef M.R. Barnett, Twinning and Its Role in Wrought Magnesium Alloys, Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, C. Bettles and M. Barnett, Ed., Woodhead Publishing Limited, London, 2012, p 105–143 CrossRef
27.
Zurück zum Zitat J.H. Sung, J.H. Kim, and R.H. Wagoner, A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plast., 2010, 26(12), p 1746–1771CrossRef J.H. Sung, J.H. Kim, and R.H. Wagoner, A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature, Int. J. Plast., 2010, 26(12), p 1746–1771CrossRef
28.
Zurück zum Zitat G.R. Cowper and P.S. Symonds, Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams, Division of Applied Mechanics Report No. 28, Brown University, 1958 G.R. Cowper and P.S. Symonds, Strain Hardening and Strain Rate Effects in the Impact Loading of Cantilever Beams, Division of Applied Mechanics Report No. 28, Brown University, 1958
29.
Zurück zum Zitat X. Lou, M. Li, R. Boger, S. Agnew, and R. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast., 2007, 23(1), p 44–86CrossRef X. Lou, M. Li, R. Boger, S. Agnew, and R. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast., 2007, 23(1), p 44–86CrossRef
30.
Zurück zum Zitat S.R. Agnew and Ö. Duygulu, Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B, Int. J. Plast., 2005, 21(6), p 1161–1193CrossRef S.R. Agnew and Ö. Duygulu, Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B, Int. J. Plast., 2005, 21(6), p 1161–1193CrossRef
31.
Zurück zum Zitat M.R. Barnett, A Taylor Model Based Description of the Proof Stress of Magnesium AZ31 During Hot Working, Metall. Mater. Trans. A, 2003, 34(9), p 1799–1806CrossRef M.R. Barnett, A Taylor Model Based Description of the Proof Stress of Magnesium AZ31 During Hot Working, Metall. Mater. Trans. A, 2003, 34(9), p 1799–1806CrossRef
32.
Zurück zum Zitat J. Koike, Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature, Metall. Mater. Trans. A, 2005, 36(7), p 1689–1696CrossRef J. Koike, Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature, Metall. Mater. Trans. A, 2005, 36(7), p 1689–1696CrossRef
33.
Zurück zum Zitat M.R. Barnett, Z. Keshavarz, and X. Ma, A Semianalytical Sachs Model for the Flow Stress of a Magnesium Alloy, Metall. Mater. Trans. A, 2006, 37(7), p 2283–2293CrossRef M.R. Barnett, Z. Keshavarz, and X. Ma, A Semianalytical Sachs Model for the Flow Stress of a Magnesium Alloy, Metall. Mater. Trans. A, 2006, 37(7), p 2283–2293CrossRef
34.
Zurück zum Zitat M.R. Barnett, Twinning and the Ductility of Magnesium Alloys Part II: “Contraction” Twins, Mater. Sci. Eng. A, 2007, 464(1-2), p 8–16CrossRef M.R. Barnett, Twinning and the Ductility of Magnesium Alloys Part II: “Contraction” Twins, Mater. Sci. Eng. A, 2007, 464(1-2), p 8–16CrossRef
35.
Zurück zum Zitat M.R. Barnett, Twinning and the Ductility of Magnesium Alloys Part I: “Tension” Twins, Mater. Sci. Eng. A, 2007, 464(1-2), p 1–7CrossRef M.R. Barnett, Twinning and the Ductility of Magnesium Alloys Part I: “Tension” Twins, Mater. Sci. Eng. A, 2007, 464(1-2), p 1–7CrossRef
Metadaten
Titel
Mechanical Behavior and Microstructural Analysis of Extruded AZ31B Magnesium Alloy Processed by Backward Extrusion
verfasst von
Ping Zhou
Elmar Beeh
Horst E. Friedrich
Thomas Grünheid
Publikationsdatum
31.05.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2131-3

Weitere Artikel der Ausgabe 7/2016

Journal of Materials Engineering and Performance 7/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.