Skip to main content
Erschienen in: Acta Mechanica 8/2020

06.06.2020 | Original Paper

Mechanical properties and energy absorption of FCC lattice structures with different orientation angles

verfasst von: Peng Wang, Yijie Bian, Fan Yang, Hualin Fan, Bailin Zheng

Erschienen in: Acta Mechanica | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The dynamic crushing behaviors of FCC lattice structures with various rotation angles are explored by numerical simulations. According to the localization band formed by the cell collapse, several deformation modes are distinguished. The effects of the orientation angle and the crushing velocity on the mechanical properties of the lattice are investigated. It is shown that the deformation mode depends strongly on the orientation angle and the impact velocity, which can be plotted on a mode classification map. It also indicates that there exists an optimal orientation angle of the FCC lattice structure which corresponds to the highest plateau stress and thus the best energy absorption capacity.
Literatur
1.
Zurück zum Zitat Zhang, X.Y., Fang, G., Zhou, J.: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review. Materials 10(1), 50 (2017)CrossRef Zhang, X.Y., Fang, G., Zhou, J.: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: a review. Materials 10(1), 50 (2017)CrossRef
2.
Zurück zum Zitat Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46(1), 309–27 (2001)CrossRef Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46(1), 309–27 (2001)CrossRef
3.
Zurück zum Zitat Zhao, M., Liu, F., Fu, G., Zhang, D., Zhang, T., Zhou, H.: Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials 11(12), 2411 (2018)CrossRef Zhao, M., Liu, F., Fu, G., Zhang, D., Zhang, T., Zhou, H.: Improved mechanical properties and energy absorption of BCC lattice structures with triply periodic minimal surfaces fabricated by SLM. Materials 11(12), 2411 (2018)CrossRef
4.
Zurück zum Zitat Mines, R.A.W., Tsopanos, S., Shen, Y., Hasan, R., Mckown, S.T.: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores. Int. J. Impact Eng. 60(Complete), 120–32 (2013)CrossRef Mines, R.A.W., Tsopanos, S., Shen, Y., Hasan, R., Mckown, S.T.: Drop weight impact behaviour of sandwich panels with metallic micro lattice cores. Int. J. Impact Eng. 60(Complete), 120–32 (2013)CrossRef
5.
Zurück zum Zitat Karagiozova, D., Yu, T.X.: Plastic deformation modes of regular hexagonal honeycombs under in-plane biaxial compression. Int. J. Mech. Sci. 46(10), 1489–515 (2004)CrossRef Karagiozova, D., Yu, T.X.: Plastic deformation modes of regular hexagonal honeycombs under in-plane biaxial compression. Int. J. Mech. Sci. 46(10), 1489–515 (2004)CrossRef
6.
Zurück zum Zitat Hu, L.L., Yu, T.X., Gao, Z.Y., Huang, X.Q.: The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression. Int. J. Mech. Sci. 50(7), 1224–36 (2008)CrossRef Hu, L.L., Yu, T.X., Gao, Z.Y., Huang, X.Q.: The inhomogeneous deformation of polycarbonate circular honeycombs under in-plane compression. Int. J. Mech. Sci. 50(7), 1224–36 (2008)CrossRef
7.
Zurück zum Zitat Balawi, S., Abot, J.L.: A refined model for the effective in-plane elastic moduli of hexagonal honeycombs. Compos. Struct. 84(2), 147–58 (2008)CrossRef Balawi, S., Abot, J.L.: A refined model for the effective in-plane elastic moduli of hexagonal honeycombs. Compos. Struct. 84(2), 147–58 (2008)CrossRef
8.
Zurück zum Zitat Papka, S.D., Kyriakides, S.: Biaxial crushing of honeycombs–part 1: experiments. Int. J. Solids Struct. 36(29), 4367–96 (1999)CrossRef Papka, S.D., Kyriakides, S.: Biaxial crushing of honeycombs–part 1: experiments. Int. J. Solids Struct. 36(29), 4367–96 (1999)CrossRef
9.
Zurück zum Zitat Papka, S.D., Kyriakides, S.: In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 42(10), 1499–532 (1994)CrossRef Papka, S.D., Kyriakides, S.: In-plane compressive response and crushing of honeycomb. J. Mech. Phys. Solids 42(10), 1499–532 (1994)CrossRef
10.
Zurück zum Zitat Wu, E., Jiang, W.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19(5–6), 439–56 (1997)CrossRef Wu, E., Jiang, W.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19(5–6), 439–56 (1997)CrossRef
11.
Zurück zum Zitat Zhao, H., Gary, G.: Crushing behaviour of aluminium honeycombs under impact loading. Int. J. Impact Eng. 21(10), 827–36 (1998)CrossRef Zhao, H., Gary, G.: Crushing behaviour of aluminium honeycombs under impact loading. Int. J. Impact Eng. 21(10), 827–36 (1998)CrossRef
12.
Zurück zum Zitat Zou, Z., Reid, S.R., Tan, P.J., Li, S., Harrigan, J.J.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36(1), 165–76 (2009)CrossRef Zou, Z., Reid, S.R., Tan, P.J., Li, S., Harrigan, J.J.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36(1), 165–76 (2009)CrossRef
13.
Zurück zum Zitat GUO, X.E., GIBSON, L.J.: Behavior of intact and damaged honeycombs: a finite element study. Int. J. Mech. Sci. 41(1), 85–105 (1999)CrossRef GUO, X.E., GIBSON, L.J.: Behavior of intact and damaged honeycombs: a finite element study. Int. J. Mech. Sci. 41(1), 85–105 (1999)CrossRef
14.
Zurück zum Zitat PAPKA, S.D.: KYRIAKIDES: experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater. 46(8), 2765–76 (1998)CrossRef PAPKA, S.D.: KYRIAKIDES: experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater. 46(8), 2765–76 (1998)CrossRef
15.
Zurück zum Zitat Li, Q.M., Reid, S.R.: About one-dimensional shock propagation in a cellular material. Int. J. Impact Eng. 32(7), 1898–906 (2006)CrossRef Li, Q.M., Reid, S.R.: About one-dimensional shock propagation in a cellular material. Int. J. Impact Eng. 32(7), 1898–906 (2006)CrossRef
16.
Zurück zum Zitat Ruan, D., Lu, G., Wang, B., Yu, T.X.: In-plane dynamic crushing of honeycombs—a finite element study. Int. J. Impact Eng. 28(2), 161–82 (2003)CrossRef Ruan, D., Lu, G., Wang, B., Yu, T.X.: In-plane dynamic crushing of honeycombs—a finite element study. Int. J. Impact Eng. 28(2), 161–82 (2003)CrossRef
17.
Zurück zum Zitat Liao, S., Zheng, Z., Yu, J.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef Liao, S., Zheng, Z., Yu, J.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef
18.
Zurück zum Zitat Zheng, Z., Jilin, Y.U., Jianrong, L.I.: Dynamic crushing of 2D cellular structures: a finite element study. Int. J. Impact Eng. 32(1), 650–64 (2005)CrossRef Zheng, Z., Jilin, Y.U., Jianrong, L.I.: Dynamic crushing of 2D cellular structures: a finite element study. Int. J. Impact Eng. 32(1), 650–64 (2005)CrossRef
19.
Zurück zum Zitat Hu, L., You, F., Yu, T.: Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 46, 511–23 (2013)CrossRef Hu, L., You, F., Yu, T.: Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 46, 511–23 (2013)CrossRef
20.
Zurück zum Zitat CHUANG, ChengHsin, HUANG, JongShin: Theoretical expressions for describing the stiffness and strength of regular hexagonal honeycombs with Plateau borders. Mater. Des. 24(2), 263–72 (2003)CrossRef CHUANG, ChengHsin, HUANG, JongShin: Theoretical expressions for describing the stiffness and strength of regular hexagonal honeycombs with Plateau borders. Mater. Des. 24(2), 263–72 (2003)CrossRef
21.
Zurück zum Zitat Hu, L.L., He, X.L., Wu, G.P., Yu, T.X.: Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 75, 150–61 (2015)CrossRef Hu, L.L., He, X.L., Wu, G.P., Yu, T.X.: Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 75, 150–61 (2015)CrossRef
22.
Zurück zum Zitat Liu, Y., Zhang, X.: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int. J. Impact Eng. 36(1), 98–109 (2009)CrossRef Liu, Y., Zhang, X.: The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs. Int. J. Impact Eng. 36(1), 98–109 (2009)CrossRef
23.
Zurück zum Zitat Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part II: dynamic crushing based on finite element simulation. Int. J. Impact Eng. 36(10–11), 1231–41 (2009)CrossRef Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part II: dynamic crushing based on finite element simulation. Int. J. Impact Eng. 36(10–11), 1231–41 (2009)CrossRef
24.
Zurück zum Zitat Ushijima, K., Cantwell, W., Mines, R., Tsopanos, S., Smith, M.: An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandw. Struct. Mater. 13(1), 303–29 (2011)CrossRef Ushijima, K., Cantwell, W., Mines, R., Tsopanos, S., Smith, M.: An investigation into the compressive properties of stainless steel micro-lattice structures. J. Sandw. Struct. Mater. 13(1), 303–29 (2011)CrossRef
25.
Zurück zum Zitat Ptochos, E., Labeas, G.: Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods. J. Sandw. Struct. Mater. 14(5), 597–626 (2012)CrossRef Ptochos, E., Labeas, G.: Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods. J. Sandw. Struct. Mater. 14(5), 597–626 (2012)CrossRef
26.
Zurück zum Zitat Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)CrossRef Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)CrossRef
27.
Zurück zum Zitat Bonatti, C., Mohr, D.: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures. Int. J. Plast. 92, 122–47 (2017)CrossRef Bonatti, C., Mohr, D.: Large deformation response of additively-manufactured FCC metamaterials: from octet truss lattices towards continuous shell mesostructures. Int. J. Plast. 92, 122–47 (2017)CrossRef
28.
Zurück zum Zitat Mueller, J., Matlack, K.H., Shea, K., Daraio, C.: Energy absorption properties of periodic and stochastic 3D lattice materials. Adv. Theory Simul. 2(10), 1900081 (2019)CrossRef Mueller, J., Matlack, K.H., Shea, K., Daraio, C.: Energy absorption properties of periodic and stochastic 3D lattice materials. Adv. Theory Simul. 2(10), 1900081 (2019)CrossRef
29.
Zurück zum Zitat Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part I: quasi-static strength predicted by limit analysis. Int. J. Impact Eng. 36(10–11), 1223–30 (2009)CrossRef Qiu, X.M., Zhang, J., Yu, T.X.: Collapse of periodic planar lattices under uniaxial compression, part I: quasi-static strength predicted by limit analysis. Int. J. Impact Eng. 36(10–11), 1223–30 (2009)CrossRef
30.
Zurück zum Zitat MarkelAlaña, A.A.S.: Analytical model of the elastic behavior of a modified face-centered cubic lattice structure. J. Mech. Behav. Biomed. Mater. 98, 357–368 (2019) CrossRef MarkelAlaña, A.A.S.: Analytical model of the elastic behavior of a modified face-centered cubic lattice structure. J. Mech. Behav. Biomed. Mater. 98, 357–368 (2019) CrossRef
31.
Zurück zum Zitat Merrett, R.P., Langdon, G.S., Theobald, M.D.: The blast and impact loading of aluminium foam. Mater. Des. 44, 311–9 (2013)CrossRef Merrett, R.P., Langdon, G.S., Theobald, M.D.: The blast and impact loading of aluminium foam. Mater. Des. 44, 311–9 (2013)CrossRef
Metadaten
Titel
Mechanical properties and energy absorption of FCC lattice structures with different orientation angles
verfasst von
Peng Wang
Yijie Bian
Fan Yang
Hualin Fan
Bailin Zheng
Publikationsdatum
06.06.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 8/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02710-x

Weitere Artikel der Ausgabe 8/2020

Acta Mechanica 8/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.