Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2021

02.08.2021

Microstructural Characterization and Mechanical Properties of Duplex and Super Austenitic Stainless Steels under Dynamic Impact Deformation

verfasst von: Shing-Hoa Wang, Wuan-Yun Hsiao, Yo-Lun Yang, Chih-Yuan Chen, Jer-Ren Yang, Woei-Shyan Lee, Chien-Chon Chen, Po-Kai Chiu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructures of the duplex stainless steels (DSSs) SAF 2507 and SAF 2205 and the super austenitic stainless steel (SASS) 254 SMO were studied by subjecting the materials to high-speed dynamic impact tests under two strain rates: 8.5 × 102 and 5 × 103 s−1. Regardless of the material, the mechanical properties, that is, the flow stress–strain curves, and microstructures were strongly affected by the impact loading rate. In addition, within the α phase, as the strain rate increased, the number of tangled dislocations in the α phase increased in the SAF 2507 DSS and SAF 2205 DSS. However, within the γ phase, several persistent slip bands intersecting with twins were observed in the SAF 2205 DSS, even after deformation at the lower strain rate of 8.5 × 102 s−1. Furthermore, deformation twins occurred only in the γ phase after impact deformation at the higher strain rate of 5 × 103 s−1 in both DSSs. A strain-induced martensite structure (α′) was observed in the 254 SMO SASS. Therefore, the mechanical properties of stainless steels are strongly associated with the deformation structures, which are influenced heavily by the deformation rate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat I. Alvarez-Armas, M.C. Marinelli, S. Hereñú, S. Degallaix, and A.F. Armas, On the Cyclic Softening Behavior of SAF 2507 Duplex Stainless Steel, Acta Mater., 2006, 54, p 5041–5049.CrossRef I. Alvarez-Armas, M.C. Marinelli, S. Hereñú, S. Degallaix, and A.F. Armas, On the Cyclic Softening Behavior of SAF 2507 Duplex Stainless Steel, Acta Mater., 2006, 54, p 5041–5049.CrossRef
2.
Zurück zum Zitat C.-S. Huang, S.-H. Wang, W.-S. Lee, T.-H. Chen, and C. Lien, Dynamic Impact Behavior and Ferrite Variation of Special Stainless Steels, Scr. Mater., 2005, 52, p 843–849.CrossRef C.-S. Huang, S.-H. Wang, W.-S. Lee, T.-H. Chen, and C. Lien, Dynamic Impact Behavior and Ferrite Variation of Special Stainless Steels, Scr. Mater., 2005, 52, p 843–849.CrossRef
3.
Zurück zum Zitat Y. Xiong, T. He, and Y. Lu, Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2018, 27, p 1232–1240.CrossRef Y. Xiong, T. He, and Y. Lu, Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2018, 27, p 1232–1240.CrossRef
4.
Zurück zum Zitat Y. Yang, L.H. Jiang, and S.H. Luo, Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing, J. Mater. Eng. Perform., 2016, 25, p 29–37.CrossRef Y. Yang, L.H. Jiang, and S.H. Luo, Effect of Strain on Microstructure Evolution of 1Cr18Ni9Ti Stainless Steel During Adiabatic Shearing, J. Mater. Eng. Perform., 2016, 25, p 29–37.CrossRef
5.
Zurück zum Zitat A. Tiamiyu, J.A. Szpunar, and A.G. Odeshi, Strain Rate Sensitivity and Activation Volume of AISI 321 Stainless Steel under Dynamic Impact Loading: Grain Size Effect, Mater. Charact., 2019, 154, p 7–19.CrossRef A. Tiamiyu, J.A. Szpunar, and A.G. Odeshi, Strain Rate Sensitivity and Activation Volume of AISI 321 Stainless Steel under Dynamic Impact Loading: Grain Size Effect, Mater. Charact., 2019, 154, p 7–19.CrossRef
6.
Zurück zum Zitat A. Tiamiyu, M. Eskandari, M. Nezakat, X. Wang, J.A. Szpunar, and A.G. Odeshi, A Comparative Study of the Compressive Behaviour of AISI 321 Austenitic Stainless Steel under Quasi-static and Dynamic Shock Loading, Mater. Des., 2016, 112, p 309–319.CrossRef A. Tiamiyu, M. Eskandari, M. Nezakat, X. Wang, J.A. Szpunar, and A.G. Odeshi, A Comparative Study of the Compressive Behaviour of AISI 321 Austenitic Stainless Steel under Quasi-static and Dynamic Shock Loading, Mater. Des., 2016, 112, p 309–319.CrossRef
7.
Zurück zum Zitat M.J. Sohrabi, H. Mirzadeh, and C. Dehghanian, Significance of Martensite Reversion and Austenite Stability to the Mechanical Properties and Transformation-Induced Plasticity Effect of Austenitic Stainless Steels, J. Mater. Eng. Perform., 2020, 29, p 3233–3242.CrossRef M.J. Sohrabi, H. Mirzadeh, and C. Dehghanian, Significance of Martensite Reversion and Austenite Stability to the Mechanical Properties and Transformation-Induced Plasticity Effect of Austenitic Stainless Steels, J. Mater. Eng. Perform., 2020, 29, p 3233–3242.CrossRef
8.
Zurück zum Zitat A. Tiamiyu, A.G. Odeshi, and J.A. Szpunar, Characterization of Coarse and Ultrafine-Grained Austenitic Stainless Steel Subjected to Dynamic Impact Load: XRD, SEM, TEM and EBSD Analyses, Materialia, 2018, 4, p 81–98.CrossRef A. Tiamiyu, A.G. Odeshi, and J.A. Szpunar, Characterization of Coarse and Ultrafine-Grained Austenitic Stainless Steel Subjected to Dynamic Impact Load: XRD, SEM, TEM and EBSD Analyses, Materialia, 2018, 4, p 81–98.CrossRef
9.
Zurück zum Zitat S.-T. Chiou, W.-C. Cheng, and W.-S. Lee, Strain Rate Effects on The mechanical Properties of a Fe-Mn-Al Alloy under Dynamic Impact Deformations, Mater. Sci. Eng. A, 2005, 392, p 156–162.CrossRef S.-T. Chiou, W.-C. Cheng, and W.-S. Lee, Strain Rate Effects on The mechanical Properties of a Fe-Mn-Al Alloy under Dynamic Impact Deformations, Mater. Sci. Eng. A, 2005, 392, p 156–162.CrossRef
10.
Zurück zum Zitat W.-S. Lee, W.-C. Sue, C.-F. Lin, and C.-J. Wu, The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy, J. Mater. Process. Technol., 2000, 100, p 116–122.CrossRef W.-S. Lee, W.-C. Sue, C.-F. Lin, and C.-J. Wu, The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy, J. Mater. Process. Technol., 2000, 100, p 116–122.CrossRef
11.
Zurück zum Zitat W.-S. Lee, and C.-F. Lin, Impact Propertied and Microstructure Evolution of 304L Stainless Steel, Mater. Sci. Eng. A, 2001, 308, p 124–135.CrossRef W.-S. Lee, and C.-F. Lin, Impact Propertied and Microstructure Evolution of 304L Stainless Steel, Mater. Sci. Eng. A, 2001, 308, p 124–135.CrossRef
12.
Zurück zum Zitat W.-S. Lee, and C.-F. Lin, Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures, Mater. Sci. Eng. A, 1998, 241, p 48–59.CrossRef W.-S. Lee, and C.-F. Lin, Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures, Mater. Sci. Eng. A, 1998, 241, p 48–59.CrossRef
13.
Zurück zum Zitat W.-S. Lee, and C.-F. Lin, The Effects of Temperature and Strain Rate on the Dynamic Flow Behavior of Different Steels, Mater. Sci. Eng. A, 2006, 426, p 101–113.CrossRef W.-S. Lee, and C.-F. Lin, The Effects of Temperature and Strain Rate on the Dynamic Flow Behavior of Different Steels, Mater. Sci. Eng. A, 2006, 426, p 101–113.CrossRef
14.
Zurück zum Zitat P.K. Chiu, K.L. Weng, S.H. Wang, J.R. Yang, Y.S. Huang, and J. Fang, Low-Cycle Fatigue-Induced Martensitic Transformation in SAF 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2005, 398, p 349–359.CrossRef P.K. Chiu, K.L. Weng, S.H. Wang, J.R. Yang, Y.S. Huang, and J. Fang, Low-Cycle Fatigue-Induced Martensitic Transformation in SAF 2205 Duplex Stainless Steel, Mater. Sci. Eng. A, 2005, 398, p 349–359.CrossRef
15.
Zurück zum Zitat P.K. Chiu, S.H. Wang, J.R. Yang, K.L. Weng, and J. Fang, The Effect of Strain Ratio on Morphology of Dislocation in Low Cycle Fatigued SAF 2205 DSS, Mater. Chem. Phys., 2006, 98, p 103–110.CrossRef P.K. Chiu, S.H. Wang, J.R. Yang, K.L. Weng, and J. Fang, The Effect of Strain Ratio on Morphology of Dislocation in Low Cycle Fatigued SAF 2205 DSS, Mater. Chem. Phys., 2006, 98, p 103–110.CrossRef
16.
Zurück zum Zitat A. Mateo, A. Gironès, J. Keichel, L. Llanes, N. Akdut, and M. Anglada, Cyclic Deformation Behavior of Superduplex Stainless Steels, Mater. Sci. Eng. A, 2001, 314, p 176–185.CrossRef A. Mateo, A. Gironès, J. Keichel, L. Llanes, N. Akdut, and M. Anglada, Cyclic Deformation Behavior of Superduplex Stainless Steels, Mater. Sci. Eng. A, 2001, 314, p 176–185.CrossRef
17.
Zurück zum Zitat W.-S. Lee, and C.-F. Lin, The Morphologies and Characteristics of Impact-Induced Martensite in 304L Stainless Steel, Scr. Mater., 2000, 43, p 777–782.CrossRef W.-S. Lee, and C.-F. Lin, The Morphologies and Characteristics of Impact-Induced Martensite in 304L Stainless Steel, Scr. Mater., 2000, 43, p 777–782.CrossRef
18.
Zurück zum Zitat A. Tiamiyu, A.G. Odeshi, and J.A. Szpunar, Multiple Strengthening Sources and Adiabatic Shear Banding during High Strain-Rate Deformation of AISI 321 Austenitic Stainless Steel: Effects of Grain Size and Strain Rate, Mater. Sci. Eng. A, 2018, 711, p 233–249.CrossRef A. Tiamiyu, A.G. Odeshi, and J.A. Szpunar, Multiple Strengthening Sources and Adiabatic Shear Banding during High Strain-Rate Deformation of AISI 321 Austenitic Stainless Steel: Effects of Grain Size and Strain Rate, Mater. Sci. Eng. A, 2018, 711, p 233–249.CrossRef
19.
Zurück zum Zitat M.J. Bibby, and J. Gordon Parr, The Martensitic Transformation in Pure Iron, Cobalt, 1963, 20, p 111. M.J. Bibby, and J. Gordon Parr, The Martensitic Transformation in Pure Iron, Cobalt, 1963, 20, p 111.
20.
Zurück zum Zitat X. Wu, N. Tao, Y. Hong, J. Lu, and K. Lu, γ→ε Martensite Transformation and Twinning Deformation in fcc Cobalt during Surface Mechanical Attrition Treatment, Scr. Mater., 2005, 52, p 547–551.CrossRef X. Wu, N. Tao, Y. Hong, J. Lu, and K. Lu, γ→ε Martensite Transformation and Twinning Deformation in fcc Cobalt during Surface Mechanical Attrition Treatment, Scr. Mater., 2005, 52, p 547–551.CrossRef
21.
Zurück zum Zitat I. Mészáros, and J. Prohászka, Magnetic Investigation on the Effect of α′-Martensite on the Properties of Austenitic Stainless Steel, J. Mater. Process. Technol., 2005, 161, p 162–168.CrossRef I. Mészáros, and J. Prohászka, Magnetic Investigation on the Effect of α′-Martensite on the Properties of Austenitic Stainless Steel, J. Mater. Process. Technol., 2005, 161, p 162–168.CrossRef
22.
Zurück zum Zitat W.S. Lee, and C.F. Lin, Effects of Pre-strain and Strain Rate on Dynamic Deformation Characteristics of 304L Stainless Steel Part 2-Microstructural Study, Mater. Sci. Technol., 2002, 18, p 877–884.CrossRef W.S. Lee, and C.F. Lin, Effects of Pre-strain and Strain Rate on Dynamic Deformation Characteristics of 304L Stainless Steel Part 2-Microstructural Study, Mater. Sci. Technol., 2002, 18, p 877–884.CrossRef
23.
Zurück zum Zitat B. Cao, T. Iwamoto, and P.P. Bhattacharjee, An Experimental Study on Strain-Induced Martensitic Transformation Behavior in SUS304 Austenitic Stainless Steel during Higher Strain Rate Deformation by Continuous Evaluation of Relative Magnetic Permeability, Mater. Sci. Eng. A, 2020, 774, p 138927.CrossRef B. Cao, T. Iwamoto, and P.P. Bhattacharjee, An Experimental Study on Strain-Induced Martensitic Transformation Behavior in SUS304 Austenitic Stainless Steel during Higher Strain Rate Deformation by Continuous Evaluation of Relative Magnetic Permeability, Mater. Sci. Eng. A, 2020, 774, p 138927.CrossRef
24.
Zurück zum Zitat P. Maj, B. Adamczyk-Cieslak, and M. Lewczuk, Formability, Microstructure and Mechanical Properties of Flow-Formed 17–4 PH Stainless Steel, J. Mater. Eng. Perform., 2018, 27, p 6435–6442.CrossRef P. Maj, B. Adamczyk-Cieslak, and M. Lewczuk, Formability, Microstructure and Mechanical Properties of Flow-Formed 17–4 PH Stainless Steel, J. Mater. Eng. Perform., 2018, 27, p 6435–6442.CrossRef
25.
Zurück zum Zitat W.S. Lee, G.L. Xiea, and C.F. Lin, The Strain Rate and Temperature Dependence of the Dynamic Impact Response of Tungsten Composite, Mater. Sci. Eng. A, 2001, 257, p 256–267.CrossRef W.S. Lee, G.L. Xiea, and C.F. Lin, The Strain Rate and Temperature Dependence of the Dynamic Impact Response of Tungsten Composite, Mater. Sci. Eng. A, 2001, 257, p 256–267.CrossRef
26.
Zurück zum Zitat M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994, p 420–423CrossRef M.A. Meyers, Dynamic Behavior of Materials, Wiley, New York, 1994, p 420–423CrossRef
27.
Zurück zum Zitat C.S. Whitcroft, and J.W. Martin, The Influence of Chromium Content on the Precipitation of γ’ (Ordered Ni3Ti) in Some Austenitic Steels, Metallography, 1969, 2, p 309–322.CrossRef C.S. Whitcroft, and J.W. Martin, The Influence of Chromium Content on the Precipitation of γ’ (Ordered Ni3Ti) in Some Austenitic Steels, Metallography, 1969, 2, p 309–322.CrossRef
28.
Zurück zum Zitat S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants, Cold Rolling Behavior of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2004, 52, p 2005–2012.CrossRef S. Vercammen, B. Blanpain, B.C. De Cooman, and P. Wollants, Cold Rolling Behavior of an Austenitic Fe-30Mn-3Al-3Si TWIP-Steel: The Importance of Deformation Twinning, Acta Mater., 2004, 52, p 2005–2012.CrossRef
29.
Zurück zum Zitat A. Rohatgi, and K.S. Vecchio, The Variation of Dislocation Density as a Function of the Stacking Fault Energy in Shock-Deformed FCC Materials, Mater. Sci. Eng. A, 2002, 328, p 256–266.CrossRef A. Rohatgi, and K.S. Vecchio, The Variation of Dislocation Density as a Function of the Stacking Fault Energy in Shock-Deformed FCC Materials, Mater. Sci. Eng. A, 2002, 328, p 256–266.CrossRef
30.
Zurück zum Zitat O. Vöhringer, Flow stress for Twinning of Alpha-Copper Alloys, Z. Metallk., 1976, 67, p 518–524. O. Vöhringer, Flow stress for Twinning of Alpha-Copper Alloys, Z. Metallk., 1976, 67, p 518–524.
31.
Zurück zum Zitat J.-Y. Choi, and W. Jin, Strain Induced Martensite Formation and Its Effect on Strain Hardening Behavior in the Cold Drawn 304 Austenitic Stainless Steels, Acta Mater., 1997, 36, p 99–104. J.-Y. Choi, and W. Jin, Strain Induced Martensite Formation and Its Effect on Strain Hardening Behavior in the Cold Drawn 304 Austenitic Stainless Steels, Acta Mater., 1997, 36, p 99–104.
32.
Zurück zum Zitat H. Najafi, and S. Asgari, Strain Hardening Mechanisms in aged AEREX350 Superalloy, Mater. Sci. Eng. A, 2005, 398, p 204–208.CrossRef H. Najafi, and S. Asgari, Strain Hardening Mechanisms in aged AEREX350 Superalloy, Mater. Sci. Eng. A, 2005, 398, p 204–208.CrossRef
33.
Zurück zum Zitat Y.N. Petrov, V.L. Svechnikov, and G.N. Nadezhdin, The Stacking-Fault Energy and Dislocation Structure of Titanium Alloys, Fiz. Met. Metalloved., 1984, 58, p 76–80. Y.N. Petrov, V.L. Svechnikov, and G.N. Nadezhdin, The Stacking-Fault Energy and Dislocation Structure of Titanium Alloys, Fiz. Met. Metalloved., 1984, 58, p 76–80.
34.
Zurück zum Zitat C.-C. Wu, S.-H. Wang, C.-Y. Chen, J.-R. Yang, P.-K. Chiu, and J. Fang, Inverse Effect of Strain Rate on Mechanical Behavior and Phase Transformation of Superaustenitic Stainless Steel, Scr. Mater., 2007, 56, p 717–720.CrossRef C.-C. Wu, S.-H. Wang, C.-Y. Chen, J.-R. Yang, P.-K. Chiu, and J. Fang, Inverse Effect of Strain Rate on Mechanical Behavior and Phase Transformation of Superaustenitic Stainless Steel, Scr. Mater., 2007, 56, p 717–720.CrossRef
35.
Zurück zum Zitat D.M. Xua, G.Q. Li, X.L. Wan, R.D.K. Misra, J.X. Yu, Y.J. Zhang, and G. Xu, The Significant Impact of Cold Deformation on Structure-Property Relationship in Phase Reversion-Induced Stainless Steels, Mater. Charact., 2018, 145, p 157–171.CrossRef D.M. Xua, G.Q. Li, X.L. Wan, R.D.K. Misra, J.X. Yu, Y.J. Zhang, and G. Xu, The Significant Impact of Cold Deformation on Structure-Property Relationship in Phase Reversion-Induced Stainless Steels, Mater. Charact., 2018, 145, p 157–171.CrossRef
Metadaten
Titel
Microstructural Characterization and Mechanical Properties of Duplex and Super Austenitic Stainless Steels under Dynamic Impact Deformation
verfasst von
Shing-Hoa Wang
Wuan-Yun Hsiao
Yo-Lun Yang
Chih-Yuan Chen
Jer-Ren Yang
Woei-Shyan Lee
Chien-Chon Chen
Po-Kai Chiu
Publikationsdatum
02.08.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06063-x

Weitere Artikel der Ausgabe 11/2021

Journal of Materials Engineering and Performance 11/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.