Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2022

07.04.2022 | Technical Article

Microstructure and Fatigue Properties of Ti-48Al Alloy Fabricated by the Twin-Wire Plasma Arc Additive Manufacturing

verfasst von: Xi Zhang, Qinghua Lu, Peilei Zhang, Zhishui Yu, Chen Shen, Lin Wang, Xueming Hua

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the inherent temperature brittleness and poor workability, the forming and fabrication of TiAl alloy is extremely difficult. Thus, in recent years, an innovative twin-wire-based plasma arc additive manufacturing (TW-PAAM) technique has been developed to fabricate the Ti-48Al alloy with low cost. In this research, the Ti-48Al alloys are fabricated by the TW-PAAM and the tungsten inert gas welding-based wire and arc additive manufacturing (TIG-WAAM). Afterward, the microstructure, residual stress and fatigue properties are characterized subsequently. The microstructure of the TiAl alloy was found to consist of a dendritic grain region and a fully lamellar colony region. The fully lamellar colonies composed of α2 and γ phases, and the size of the lamellar colonies tends to increase from the upper to the lower. The residual stress value in the TiAl alloy of lower part is higher than the upper part. Additionally, the mean residual stress value of TW-PAAM TiAl alloy (57.6 MPa) is lower than the TIG-WAAM TiAl alloy(68.4 MPa), decreasing by 15.7%. And the fatigue strength of TiAl alloy in the lower part shows poor fatigue properties compared to the upper part, which is mainly attribute to the effect of residual stress and the size of lamellar colonies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y.W. Kim, Ordered Intermetallic Alloys Part III: Gamma Titanium Aluminides, Jom, 1994, 46(7), p 30–39.CrossRef Y.W. Kim, Ordered Intermetallic Alloys Part III: Gamma Titanium Aluminides, Jom, 1994, 46(7), p 30–39.CrossRef
2.
Zurück zum Zitat T. Noda, Application of Cast Gamma TiAl for Automobiles, Intermetallics, 1998, 6(7–8), p 709–713.CrossRef T. Noda, Application of Cast Gamma TiAl for Automobiles, Intermetallics, 1998, 6(7–8), p 709–713.CrossRef
3.
Zurück zum Zitat F. Appel, J.D.H. Paul and M. Oehring, Thermophysical Constants, Gamma Titan. Alum. Alloy., 2011, 44, p 25–31.CrossRef F. Appel, J.D.H. Paul and M. Oehring, Thermophysical Constants, Gamma Titan. Alum. Alloy., 2011, 44, p 25–31.CrossRef
5.
Zurück zum Zitat H. Clemens and S. Mayer, Intermetallic Titanium Aluminides in Aerospace Applications – Processing, Microstructure and Properties, Mater. High Temp., 2016, 33(4–5), p 560–570.CrossRef H. Clemens and S. Mayer, Intermetallic Titanium Aluminides in Aerospace Applications – Processing, Microstructure and Properties, Mater. High Temp., 2016, 33(4–5), p 560–570.CrossRef
6.
Zurück zum Zitat T.J. Horn and O.L.A. Harrysson, Overview of Current Additive Manufacturing Technologies and Selected Applications, Sci. Prog., 2012, 95(3), p 255–282.CrossRef T.J. Horn and O.L.A. Harrysson, Overview of Current Additive Manufacturing Technologies and Selected Applications, Sci. Prog., 2012, 95(3), p 255–282.CrossRef
12.
Zurück zum Zitat T. Artaza, A. Suárez, F. Veiga, I. Braceras, I. Tabernero, O. Larrañaga and A. Lamikiz, Wire Arc Additive Manufacturing Ti6Al4V Aeronautical Parts Using Plasma Arc Welding: Analysis of Heat-Treatment Processes in Different Atmospheres, J. Mater. Res. Technol., 2020, 9(6), p 15454–15466.CrossRef T. Artaza, A. Suárez, F. Veiga, I. Braceras, I. Tabernero, O. Larrañaga and A. Lamikiz, Wire Arc Additive Manufacturing Ti6Al4V Aeronautical Parts Using Plasma Arc Welding: Analysis of Heat-Treatment Processes in Different Atmospheres, J. Mater. Res. Technol., 2020, 9(6), p 15454–15466.CrossRef
13.
Zurück zum Zitat W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1–28.CrossRef W. Jin, C. Zhang, S. Jin, Y. Tian, D. Wellmann and W. Liu, Wire Arc Additive Manufacturing of Stainless Steels: A Review, Appl. Sci., 2020, 10(5), p 1–28.CrossRef
14.
Zurück zum Zitat C.S. Wu, L. Wang, W.J. Ren and X.Y. Zhang, Plasma Arc Welding: Process, Sensing, Control and Modeling, J. Manuf. Process., 2014, 16(1), p 74–85.CrossRef C.S. Wu, L. Wang, W.J. Ren and X.Y. Zhang, Plasma Arc Welding: Process, Sensing, Control and Modeling, J. Manuf. Process., 2014, 16(1), p 74–85.CrossRef
16.
Zurück zum Zitat Y.W. Kim, Intermetallic Alloys Based on Gamma Titanium Aluminide, Jom, 1989, 41(7), p 24–30.CrossRef Y.W. Kim, Intermetallic Alloys Based on Gamma Titanium Aluminide, Jom, 1989, 41(7), p 24–30.CrossRef
17.
Zurück zum Zitat E. Hamzah, K. Suardi and A. Ourdjini, Effect of Microstructures on the Hydrogen Attack to Gamma Titanium Aluminide at Low Temperature, Mater. Sci. Eng. A, 2005, 397(1–2), p 41–49.CrossRef E. Hamzah, K. Suardi and A. Ourdjini, Effect of Microstructures on the Hydrogen Attack to Gamma Titanium Aluminide at Low Temperature, Mater. Sci. Eng. A, 2005, 397(1–2), p 41–49.CrossRef
20.
Zurück zum Zitat C. Shen, X. Hua, F. Li, T. Zhang, Y. Li, Y. Zhang, L. Wang, Y. Ding, P. Zhang and Q. Lu, Composition-Induced Microcrack Defect Formation in the Twin-Wire Plasma Arc Additive Manufacturing of Binary TiAl Alloy: An X-Ray Computed Tomography-Based Investigation, J. Mater. Res., 2021 https://doi.org/10.1557/s43578-021-00412-1CrossRef C. Shen, X. Hua, F. Li, T. Zhang, Y. Li, Y. Zhang, L. Wang, Y. Ding, P. Zhang and Q. Lu, Composition-Induced Microcrack Defect Formation in the Twin-Wire Plasma Arc Additive Manufacturing of Binary TiAl Alloy: An X-Ray Computed Tomography-Based Investigation, J. Mater. Res., 2021 https://​doi.​org/​10.​1557/​s43578-021-00412-1CrossRef
21.
Zurück zum Zitat Y. Ma, D. Cuiuri, N. Hoye, H. Li and Z. Pan, Effects of Wire Feed Conditions on in Situ Alloying and Additive Layer Manufacturing of Titanium Aluminides Using Gas Tungsten Arc Welding, J. Mater. Res., 2014, 29(17), p 2066–2071.CrossRef Y. Ma, D. Cuiuri, N. Hoye, H. Li and Z. Pan, Effects of Wire Feed Conditions on in Situ Alloying and Additive Layer Manufacturing of Titanium Aluminides Using Gas Tungsten Arc Welding, J. Mater. Res., 2014, 29(17), p 2066–2071.CrossRef
24.
26.
Zurück zum Zitat J.P. Campbell, J.J. Kruzic, S. Lillibridge, K.T. Venkateswara Rao and R.O. Ritchie, On the Growth of Small Fatigue Cracks in γ-Based Titanium Aluminides, Scr. Mater., 1997, 37(5), p 707–712.CrossRef J.P. Campbell, J.J. Kruzic, S. Lillibridge, K.T. Venkateswara Rao and R.O. Ritchie, On the Growth of Small Fatigue Cracks in γ-Based Titanium Aluminides, Scr. Mater., 1997, 37(5), p 707–712.CrossRef
27.
Zurück zum Zitat Q.G. Wang, D. Apelian and D.A. Lados, Fatigue Behavior of A356–T6 Aluminum Cast Alloys Part I Effect of Casting Defects, J. Light Met., 2001, 1(1), p 73–84.CrossRef Q.G. Wang, D. Apelian and D.A. Lados, Fatigue Behavior of A356–T6 Aluminum Cast Alloys Part I Effect of Casting Defects, J. Light Met., 2001, 1(1), p 73–84.CrossRef
28.
Zurück zum Zitat P. Bowen, R.A. Chave and A.W. James, Cyclic Crack Growth in Titanium Aluminides, Mater. Sci. Eng. A, 1995, 192–193(Part 1), p 443–456.CrossRef P. Bowen, R.A. Chave and A.W. James, Cyclic Crack Growth in Titanium Aluminides, Mater. Sci. Eng. A, 1995, 192–193(Part 1), p 443–456.CrossRef
29.
Zurück zum Zitat Y. Zhou, J.Q. Wang, B. Zhang, W. Ke and E.H. Han, High-Temperature Fatigue Property of Ti46Al8Nb Alloy with the Fully Lamellar Microstructure, Intermetallics, 2012, 24, p 7–14.CrossRef Y. Zhou, J.Q. Wang, B. Zhang, W. Ke and E.H. Han, High-Temperature Fatigue Property of Ti46Al8Nb Alloy with the Fully Lamellar Microstructure, Intermetallics, 2012, 24, p 7–14.CrossRef
30.
Zurück zum Zitat K.S. Chan and D.S. Shih, Fundamental Aspects of Fatigue and Fracture in a TiAl Sheet Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1998, 29(1), p 73–87.CrossRef K.S. Chan and D.S. Shih, Fundamental Aspects of Fatigue and Fracture in a TiAl Sheet Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1998, 29(1), p 73–87.CrossRef
31.
Zurück zum Zitat V. Recina, High Temperature Low Cycle Fatigue Properties of Two Cast Gamma Titanium, Aluminide Alloys with Refined Microstructure, Mater. Sci. Technol., 2000, 16(3), p 333–340.CrossRef V. Recina, High Temperature Low Cycle Fatigue Properties of Two Cast Gamma Titanium, Aluminide Alloys with Refined Microstructure, Mater. Sci. Technol., 2000, 16(3), p 333–340.CrossRef
33.
Zurück zum Zitat V. Recina and B. Karlsson, High Temperature Low Cycle Fatigue Properties of Ti-48Al-2Cr-2Nb Gamma Titanium Aluminides Cast in Different Dimensions, Scr. Mater., 2000, 43, p 609–615.CrossRef V. Recina and B. Karlsson, High Temperature Low Cycle Fatigue Properties of Ti-48Al-2Cr-2Nb Gamma Titanium Aluminides Cast in Different Dimensions, Scr. Mater., 2000, 43, p 609–615.CrossRef
Metadaten
Titel
Microstructure and Fatigue Properties of Ti-48Al Alloy Fabricated by the Twin-Wire Plasma Arc Additive Manufacturing
verfasst von
Xi Zhang
Qinghua Lu
Peilei Zhang
Zhishui Yu
Chen Shen
Lin Wang
Xueming Hua
Publikationsdatum
07.04.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06847-9

Weitere Artikel der Ausgabe 10/2022

Journal of Materials Engineering and Performance 10/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.