Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2022

17.02.2022 | Technical Article

Microstructure Evolution of AZ91 Alloy Processed by Twin Parallel Channel Angular Extrusion Technique

verfasst von: M. Abdi, R. Ebrahimi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, multi-step processing of an as-cast AZ91 alloy was conducted using twin parallel channel angular extrusion. The first step was conducted at 340 °C to increase the workability, and the next steps were implemented at lower temperatures. Microstructure evolution was investigated via optical microscopy and scanning electron microscopy techniques. Additionally, x-ray diffraction analysis was used to determine the dislocation densities. Moreover, the mechanical strengths are evaluated in terms of indentation hardness values. The results indicate that processing for three passes, implemented, respectively, at temperatures of 340, 300, and 250 °C, gives the most uniform and the finest microstructure, where the average grain size is reduced to approximately 2 µm and the dislocation density to 0.61 × 1014 m−2. Besides, the average hardness value for such a processing condition reaches 104 Vickers, indicating an improvement of ~ 48% in comparison with the initial value. The improvement is due to the different strengthening mechanisms verified by hardness modeling based on the empirical relations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Ghali, W. Dietzel and K.-U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2004, 13(1), p 7–23.CrossRef E. Ghali, W. Dietzel and K.-U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2004, 13(1), p 7–23.CrossRef
2.
Zurück zum Zitat K. Mehrabi, M. Bruncko, B. McKay and A. Kneissl, Influence of Quenching Rates on Equiatomic NiTi Ribbons Fabricated by Melt-Spinning, J. Mater. Eng. Perform., 2009, 18(5), p 475–478.CrossRef K. Mehrabi, M. Bruncko, B. McKay and A. Kneissl, Influence of Quenching Rates on Equiatomic NiTi Ribbons Fabricated by Melt-Spinning, J. Mater. Eng. Perform., 2009, 18(5), p 475–478.CrossRef
3.
Zurück zum Zitat A. Baraka, H. Hamed and H. Shaarawy, Electrodeposition of Platinum Metal and Platinum-Rhodium Alloy on Titanium Substrates, J. Mater. Eng. Perform., 2003, 12(1), p 5–13.CrossRef A. Baraka, H. Hamed and H. Shaarawy, Electrodeposition of Platinum Metal and Platinum-Rhodium Alloy on Titanium Substrates, J. Mater. Eng. Perform., 2003, 12(1), p 5–13.CrossRef
4.
Zurück zum Zitat R. Birringer, H. Gleiter, H.-P. Klein and P. Marquardt, Nanocrystalline Materials an Approach to a Novel Solid Structure with Gas-like Disorder?, Phys. Lett. A, 1984, 102(8), p 365–369.CrossRef R. Birringer, H. Gleiter, H.-P. Klein and P. Marquardt, Nanocrystalline Materials an Approach to a Novel Solid Structure with Gas-like Disorder?, Phys. Lett. A, 1984, 102(8), p 365–369.CrossRef
5.
Zurück zum Zitat S. Salehizadeh, R. Serra, I. Carvalho, A. Cavaleiro and S. Carvalho, Development of Nanocomposite Coating by Hybrid Gas Condensation Process and Magnetron Sputtering Equipment: Electrochemical Characteristics and Surface Analysis, J. Mater. Eng. Perform., 2021, 30(6), p 4083–4093.CrossRef S. Salehizadeh, R. Serra, I. Carvalho, A. Cavaleiro and S. Carvalho, Development of Nanocomposite Coating by Hybrid Gas Condensation Process and Magnetron Sputtering Equipment: Electrochemical Characteristics and Surface Analysis, J. Mater. Eng. Perform., 2021, 30(6), p 4083–4093.CrossRef
6.
Zurück zum Zitat F. Khodabakhshi and A.P. Gerlich, Accumulative Fold-Forging (AFF) as a Novel Severe Plastic Deformation Process to Fabricate a High Strength Ultra-Fine Grained Layered Aluminum Alloy Structure, Mater. Charact., 2018, 136, p 229–239.CrossRef F. Khodabakhshi and A.P. Gerlich, Accumulative Fold-Forging (AFF) as a Novel Severe Plastic Deformation Process to Fabricate a High Strength Ultra-Fine Grained Layered Aluminum Alloy Structure, Mater. Charact., 2018, 136, p 229–239.CrossRef
7.
Zurück zum Zitat C. Suryanarayana and N. Al-Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater. Sci., 2013, 58(4), p 383–502.CrossRef C. Suryanarayana and N. Al-Aqeeli, Mechanically Alloyed Nanocomposites, Prog. Mater. Sci., 2013, 58(4), p 383–502.CrossRef
8.
Zurück zum Zitat C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184.CrossRef C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184.CrossRef
9.
Zurück zum Zitat P. Kumar, M. Kawasaki and T.G. Langdon, Overcoming the Paradox of Strength and Ductility in Ultrafine-Grained Materials at Low Temperatures, J. Mater. Sci., 2016, 51(1), p 7–18.CrossRef P. Kumar, M. Kawasaki and T.G. Langdon, Overcoming the Paradox of Strength and Ductility in Ultrafine-Grained Materials at Low Temperatures, J. Mater. Sci., 2016, 51(1), p 7–18.CrossRef
10.
Zurück zum Zitat L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14.CrossRef L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14.CrossRef
11.
Zurück zum Zitat E. Bagherpour, M. Reihanian, N. Pardis, R. Ebrahimi and T.G. Langdon, Ten Years of Severe Plastic Deformation (SPD) in Iran, Part I: Equal Channel Angular Pressing (ECAP), IJMF, 2018, 5(1), p 71–113. E. Bagherpour, M. Reihanian, N. Pardis, R. Ebrahimi and T.G. Langdon, Ten Years of Severe Plastic Deformation (SPD) in Iran, Part I: Equal Channel Angular Pressing (ECAP), IJMF, 2018, 5(1), p 71–113.
12.
Zurück zum Zitat C. Xu, T.G. Langdon, Z. Horita and M. Furukawa, Using Equal-Channel Angular Pressing for the Production of Superplastic Aluminum and Magnesium Alloys, J. Mater. Eng. Perform., 2004, 13(6), p 683–690.CrossRef C. Xu, T.G. Langdon, Z. Horita and M. Furukawa, Using Equal-Channel Angular Pressing for the Production of Superplastic Aluminum and Magnesium Alloys, J. Mater. Eng. Perform., 2004, 13(6), p 683–690.CrossRef
13.
Zurück zum Zitat M. Reihanian, E. Bagherpour, N. Pardis, R. Ebrahimi and N. Tsuji, Ten Years of Severe Plastic Deformation (SPD) in Iran, Part II: Accumulative Roll Bonding (ARB), IJMF, 2018, 5(2), p 1–25. M. Reihanian, E. Bagherpour, N. Pardis, R. Ebrahimi and N. Tsuji, Ten Years of Severe Plastic Deformation (SPD) in Iran, Part II: Accumulative Roll Bonding (ARB), IJMF, 2018, 5(2), p 1–25.
14.
Zurück zum Zitat A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53(6), p 893–979.CrossRef A.P. Zhilyaev and T.G. Langdon, Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, 53(6), p 893–979.CrossRef
15.
Zurück zum Zitat Y. Beygelzimer, D. Orlov, A. Korshunov, S. Synkov, V. Varyukhin, I. Vedernikova, A. Reshetov, A. Synkov, L. Polyakov and I. Korotchenkova, Features of Twist extrusion: Method, Struct. Mater. Prop. Solid State Phenom., 2006, 114, p 69–78.CrossRef Y. Beygelzimer, D. Orlov, A. Korshunov, S. Synkov, V. Varyukhin, I. Vedernikova, A. Reshetov, A. Synkov, L. Polyakov and I. Korotchenkova, Features of Twist extrusion: Method, Struct. Mater. Prop. Solid State Phenom., 2006, 114, p 69–78.CrossRef
16.
Zurück zum Zitat D.H. Shin, J.-J. Park, Y.-S. Kim and K.-T. Park, Constrained Groove Pressing and its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328(1–2), p 98–103.CrossRef D.H. Shin, J.-J. Park, Y.-S. Kim and K.-T. Park, Constrained Groove Pressing and its Application to Grain Refinement of Aluminum, Mater. Sci. Eng. A, 2002, 328(1–2), p 98–103.CrossRef
17.
Zurück zum Zitat R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1–2), p 1–78.CrossRef R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1–2), p 1–78.CrossRef
18.
Zurück zum Zitat F. Khodabakhshi and A.P. Gerlich, On the Correlation Between Indentation Hardness and Tensile Strength in Friction Stir Processed Materials, Mater. Sci. Eng. A, 2020, 789, p 139682.CrossRef F. Khodabakhshi and A.P. Gerlich, On the Correlation Between Indentation Hardness and Tensile Strength in Friction Stir Processed Materials, Mater. Sci. Eng. A, 2020, 789, p 139682.CrossRef
19.
Zurück zum Zitat N. Pardis and R. Ebrahimi, Deformation Behavior in Simple Shear Extrusion (SSE) as a New Severe Plastic Deformation Technique, Mater. Sci. Eng. A, 2009, 527(1–2), p 355–360.CrossRef N. Pardis and R. Ebrahimi, Deformation Behavior in Simple Shear Extrusion (SSE) as a New Severe Plastic Deformation Technique, Mater. Sci. Eng. A, 2009, 527(1–2), p 355–360.CrossRef
20.
Zurück zum Zitat N. Pardis, B. Talebanpour, R. Ebrahimi and S. Zomorodian, Cyclic Expansion-Extrusion (CEE): A Modified Counterpart of Cyclic Extrusion-Compression (CEC), Mater. Sci. Eng. A, 2011, 528(25–26), p 7537–7540.CrossRef N. Pardis, B. Talebanpour, R. Ebrahimi and S. Zomorodian, Cyclic Expansion-Extrusion (CEE): A Modified Counterpart of Cyclic Extrusion-Compression (CEC), Mater. Sci. Eng. A, 2011, 528(25–26), p 7537–7540.CrossRef
21.
Zurück zum Zitat M. Abdi, F. Khodabakhshi, A. Gerlich and R. Ebrahimi, Characterization of Accumulative Fold-forged Magnesium-nickel Multilayered Composite Structures, Mater. Charact., 2020, 167, p 110478–110488.CrossRef M. Abdi, F. Khodabakhshi, A. Gerlich and R. Ebrahimi, Characterization of Accumulative Fold-forged Magnesium-nickel Multilayered Composite Structures, Mater. Charact., 2020, 167, p 110478–110488.CrossRef
22.
Zurück zum Zitat M. Shahbaz, N. Pardis, R. Ebrahimi and B. Talebanpour, A Novel Single Pass Severe Plastic Deformation Technique: Vortex Extrusion, Mater. Sci. Eng. A, 2011, 530, p 469–472.CrossRef M. Shahbaz, N. Pardis, R. Ebrahimi and B. Talebanpour, A Novel Single Pass Severe Plastic Deformation Technique: Vortex Extrusion, Mater. Sci. Eng. A, 2011, 530, p 469–472.CrossRef
23.
Zurück zum Zitat M. Abdi and R. Ebrahimi, Twin Parallel Channel Angular Extrusion as a Development of ECAE in Parallel Channels, SN Appl. Sci., 2020, 2(4), p 1–10.CrossRef M. Abdi and R. Ebrahimi, Twin Parallel Channel Angular Extrusion as a Development of ECAE in Parallel Channels, SN Appl. Sci., 2020, 2(4), p 1–10.CrossRef
24.
Zurück zum Zitat G. Raab, Plastic Flow at Equal Channel Angular Processing in Parallel Channels, Mater. Sci. Eng. A, 2005, 410, p 230–233.CrossRef G. Raab, Plastic Flow at Equal Channel Angular Processing in Parallel Channels, Mater. Sci. Eng. A, 2005, 410, p 230–233.CrossRef
25.
Zurück zum Zitat R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement in Magnesium Alloys Processed by Equal Channel Angular Pressing, J. Mater. Sci., 2009, 44(17), p 4758–4762.CrossRef R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement in Magnesium Alloys Processed by Equal Channel Angular Pressing, J. Mater. Sci., 2009, 44(17), p 4758–4762.CrossRef
26.
Zurück zum Zitat J. Li, W. Xu, X. Wu, H. Ding and K. Xia, Effects of Grain Size on Compressive Behaviour in Ultrafine Grained Pure Mg Processed by Equal Channel Angular Pressing at Room Temperature, Mater. Sci. Eng. A, 2011, 528(18), p 5993–5998.CrossRef J. Li, W. Xu, X. Wu, H. Ding and K. Xia, Effects of Grain Size on Compressive Behaviour in Ultrafine Grained Pure Mg Processed by Equal Channel Angular Pressing at Room Temperature, Mater. Sci. Eng. A, 2011, 528(18), p 5993–5998.CrossRef
27.
Zurück zum Zitat N. Skryabina, V. Aptukov, P. Romanov, D. Fruchart, P. De Rango, G. Girard, C. Grandini, H. Sandim, J. Huot and J. Lang, Microstructure Optimization of Mg-Alloys by the ECAP Process Including Numerical Simulation, SPD Treat. Charact. Hydrog. Sorpt. Prop. Mol., 2019, 24(1), p 89–121. N. Skryabina, V. Aptukov, P. Romanov, D. Fruchart, P. De Rango, G. Girard, C. Grandini, H. Sandim, J. Huot and J. Lang, Microstructure Optimization of Mg-Alloys by the ECAP Process Including Numerical Simulation, SPD Treat. Charact. Hydrog. Sorpt. Prop. Mol., 2019, 24(1), p 89–121.
28.
Zurück zum Zitat M.O. Pekguleryuz, K. Kainer and A.A. Kaya, Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing, Nowe Delhi, 2013.CrossRef M.O. Pekguleryuz, K. Kainer and A.A. Kaya, Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing, Nowe Delhi, 2013.CrossRef
29.
Zurück zum Zitat R.B. Figueiredo, P.R. Cetlin and T.G. Langdon, The Processing of Difficult-to-Work Alloys by ECAP with an Emphasis on Magnesium Alloys, Acta Mater., 2007, 55(14), p 4769–4779.CrossRef R.B. Figueiredo, P.R. Cetlin and T.G. Langdon, The Processing of Difficult-to-Work Alloys by ECAP with an Emphasis on Magnesium Alloys, Acta Mater., 2007, 55(14), p 4769–4779.CrossRef
30.
Zurück zum Zitat P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo and T.G. Langdon, Avoiding Cracks and Inhomogeneities in Billets Processed by ECAP, J. Mater. Sci., 2010, 45(17), p 4561–4570.CrossRef P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo and T.G. Langdon, Avoiding Cracks and Inhomogeneities in Billets Processed by ECAP, J. Mater. Sci., 2010, 45(17), p 4561–4570.CrossRef
31.
Zurück zum Zitat F. Kang, J.T. Wang and Y. Peng, Deformation and Fracture during Equal Channel Angular Pressing of AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2008, 487(1–2), p 68–73.CrossRef F. Kang, J.T. Wang and Y. Peng, Deformation and Fracture during Equal Channel Angular Pressing of AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2008, 487(1–2), p 68–73.CrossRef
32.
Zurück zum Zitat K. Xia, J. Wang, X. Wu, G. Chen and M. Gurvan, Equal Channel Angular Pressing of Magnesium Alloy AZ31, Mater. Sci. Eng. A, 2005, 410, p 324–327.CrossRef K. Xia, J. Wang, X. Wu, G. Chen and M. Gurvan, Equal Channel Angular Pressing of Magnesium Alloy AZ31, Mater. Sci. Eng. A, 2005, 410, p 324–327.CrossRef
33.
Zurück zum Zitat C. Xu, K. Xia and T.G. Langdon, Processing of a Magnesium Alloy by Equal Channel Angular Pressing Using a Back-Pressure, Mater. Sci. Eng. A, 2009, 527(1–2), p 205–211.CrossRef C. Xu, K. Xia and T.G. Langdon, Processing of a Magnesium Alloy by Equal Channel Angular Pressing Using a Back-Pressure, Mater. Sci. Eng. A, 2009, 527(1–2), p 205–211.CrossRef
34.
Zurück zum Zitat A. Chalay-Amoly, S. Fatemi and A. Zarei-Hanzaki, Microstructure and Mechanical Properties of an AZ91 Magnesium Alloy Processed through Backward Extrusion, Arch. Metall. Mater., 2018, 63(1), p 149–157. A. Chalay-Amoly, S. Fatemi and A. Zarei-Hanzaki, Microstructure and Mechanical Properties of an AZ91 Magnesium Alloy Processed through Backward Extrusion, Arch. Metall. Mater., 2018, 63(1), p 149–157.
35.
Zurück zum Zitat Z. Horita, K. Matsubara, K. Makii and T.G. Langdon, A Two-Step Processing Route for Achieving a Superplastic Forming Capability in Dilute Magnesium Alloys, Scr. Mater., 2002, 47(4), p 255–260.CrossRef Z. Horita, K. Matsubara, K. Makii and T.G. Langdon, A Two-Step Processing Route for Achieving a Superplastic Forming Capability in Dilute Magnesium Alloys, Scr. Mater., 2002, 47(4), p 255–260.CrossRef
36.
Zurück zum Zitat M. Furui, H. Kitamura, H. Anada and T.G. Langdon, Influence of Preliminary Extrusion Conditions on the Superplastic Properties of a Magnesium Alloy Processed by ECAP, Acta Mater., 2007, 55(3), p 1083–1091.CrossRef M. Furui, H. Kitamura, H. Anada and T.G. Langdon, Influence of Preliminary Extrusion Conditions on the Superplastic Properties of a Magnesium Alloy Processed by ECAP, Acta Mater., 2007, 55(3), p 1083–1091.CrossRef
37.
Zurück zum Zitat K. Matsubara, Y. Miyahara, Z. Horita and T. Langdon, Developing Superplasticity in a Magnesium Alloy through a Combination of Extrusion and ECAP, Acta Mater., 2003, 51(11), p 3073–3084.CrossRef K. Matsubara, Y. Miyahara, Z. Horita and T. Langdon, Developing Superplasticity in a Magnesium Alloy through a Combination of Extrusion and ECAP, Acta Mater., 2003, 51(11), p 3073–3084.CrossRef
38.
Zurück zum Zitat M. Thirumurugan and S. Kumaran, Extrusion and Precipitation Hardening Behavior of AZ91 Magnesium Alloy, T. Nonferr. Metal. Soc., 2013, 23(6), p 1595–1601.CrossRef M. Thirumurugan and S. Kumaran, Extrusion and Precipitation Hardening Behavior of AZ91 Magnesium Alloy, T. Nonferr. Metal. Soc., 2013, 23(6), p 1595–1601.CrossRef
39.
Zurück zum Zitat S. Khani, M. Salehi, H. Samim, M. Aboutalebi and H. Palkowski, The Effect of Severe Plastic Deformation on the Microstructure and Mechanical Properties of As-Cast AZ31, Iran, J. Mater. Sci. Eng., 2016, 13(3), p 29–38. S. Khani, M. Salehi, H. Samim, M. Aboutalebi and H. Palkowski, The Effect of Severe Plastic Deformation on the Microstructure and Mechanical Properties of As-Cast AZ31, Iran, J. Mater. Sci. Eng., 2016, 13(3), p 29–38.
40.
Zurück zum Zitat S. Khani, M. Aboutalebi, M. Salehi, H. Samim and H. Palkowski, Microstructural Development during Equal Channel Angular Pressing of As-Cast AZ91 Alloy, Mater. Sci. Eng. A, 2016, 678, p 44–56.CrossRef S. Khani, M. Aboutalebi, M. Salehi, H. Samim and H. Palkowski, Microstructural Development during Equal Channel Angular Pressing of As-Cast AZ91 Alloy, Mater. Sci. Eng. A, 2016, 678, p 44–56.CrossRef
41.
Zurück zum Zitat Y. Yuan, Q. Guo, J. Sun, H. Liu, Q. Xu, Y. Wu, D. Song, J. Jiang and A. Ma, High Mechanical Properties of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing and Rolling, Met., 2019, 9(4), p 386–395. Y. Yuan, Q. Guo, J. Sun, H. Liu, Q. Xu, Y. Wu, D. Song, J. Jiang and A. Ma, High Mechanical Properties of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing and Rolling, Met., 2019, 9(4), p 386–395.
42.
Zurück zum Zitat A. Maltais, D. Dube, M. Fiset, G. Laroche and S. Turgeon, Improvements in the Metallography of As-Cast AZ91 Alloy, Mater. Charact., 2004, 52(2), p 103–119.CrossRef A. Maltais, D. Dube, M. Fiset, G. Laroche and S. Turgeon, Improvements in the Metallography of As-Cast AZ91 Alloy, Mater. Charact., 2004, 52(2), p 103–119.CrossRef
43.
Zurück zum Zitat K. Poorhaydari and D. Ivey, Precipitate Volume Fraction Estimation in High Strength Microalloyed Steels, Can. Metall. Q., 2009, 48(2), p 115–122.CrossRef K. Poorhaydari and D. Ivey, Precipitate Volume Fraction Estimation in High Strength Microalloyed Steels, Can. Metall. Q., 2009, 48(2), p 115–122.CrossRef
44.
Zurück zum Zitat T. Ungár and A. Borbély, The Effect of Dislocation Contrast on X-Ray Line Broadening: A New Approach to Line Profile Analysis, Appl. Phys. Lett., 1996, 69(21), p 3173–3175.CrossRef T. Ungár and A. Borbély, The Effect of Dislocation Contrast on X-Ray Line Broadening: A New Approach to Line Profile Analysis, Appl. Phys. Lett., 1996, 69(21), p 3173–3175.CrossRef
45.
Zurück zum Zitat Z. Zhang, F. Zhou and E. Lavernia, On the Analysis of Grain Size in Bulk Nanocrystalline Materials via X-Ray Diffraction, Metall. Mater. Trans. A, 2003, 34(6), p 1349–1355.CrossRef Z. Zhang, F. Zhou and E. Lavernia, On the Analysis of Grain Size in Bulk Nanocrystalline Materials via X-Ray Diffraction, Metall. Mater. Trans. A, 2003, 34(6), p 1349–1355.CrossRef
46.
Zurück zum Zitat H. Jiang, M. Rühle and E. Lavernia, On the Applicability of the X-Ray Diffraction Line Profile Analysis in Extracting Grain Size and Microstrain in Nanocrystalline Materials, J. Mater. Res., 1999, 14(2), p 549–559.CrossRef H. Jiang, M. Rühle and E. Lavernia, On the Applicability of the X-Ray Diffraction Line Profile Analysis in Extracting Grain Size and Microstrain in Nanocrystalline Materials, J. Mater. Res., 1999, 14(2), p 549–559.CrossRef
47.
Zurück zum Zitat T.H. Simm, Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys, Curr. Comput.-Aided Drug Des., 2018, 8(5), p 212–243. T.H. Simm, Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys, Curr. Comput.-Aided Drug Des., 2018, 8(5), p 212–243.
48.
Zurück zum Zitat T. Ungár and G. Tichy, The Effect of Dislocation Contrast on X-Ray Line Profiles in Untextured Polycrystals, Phys. Status Solidi A, 1999, 171(2), p 425–434.CrossRef T. Ungár and G. Tichy, The Effect of Dislocation Contrast on X-Ray Line Profiles in Untextured Polycrystals, Phys. Status Solidi A, 1999, 171(2), p 425–434.CrossRef
49.
Zurück zum Zitat P. Scardi, M. Leoni and R. Delhez, Line Broadening Analysis Using Integral Breadth Methods: A Critical Review, J. Appl. Crystallogr., 2004, 37(3), p 381–390.CrossRef P. Scardi, M. Leoni and R. Delhez, Line Broadening Analysis Using Integral Breadth Methods: A Critical Review, J. Appl. Crystallogr., 2004, 37(3), p 381–390.CrossRef
50.
Zurück zum Zitat T. Fabian, Z. Trojanova, R. Kuzel, The evolution of dislocation structure as a function of deformation temperature in ufg magnesium determined by X-Ray Diffraction. In: K.U. Kainer (Ed.), Magnesium: Proceedings of the 7th International Conference on Magnesium Alloys and their Applications, November 6-9, 2006 (Wiley-VCH, Dresden, Germany, 2007), pp. 512–516 T. Fabian, Z. Trojanova, R. Kuzel, The evolution of dislocation structure as a function of deformation temperature in ufg magnesium determined by X-Ray Diffraction. In: K.U. Kainer (Ed.), Magnesium: Proceedings of the 7th International Conference on Magnesium Alloys and their Applications, November 6-9, 2006 (Wiley-VCH, Dresden, Germany, 2007), pp. 512–516
51.
Zurück zum Zitat I. Dragomir and T. Ungár, Contrast Factors of Dislocations in the Hexagonal Crystal System, J. Appl. Crystallogr., 2002, 35(5), p 556–564.CrossRef I. Dragomir and T. Ungár, Contrast Factors of Dislocations in the Hexagonal Crystal System, J. Appl. Crystallogr., 2002, 35(5), p 556–564.CrossRef
52.
Zurück zum Zitat F. Khodabakhshi, A. Simchi, A. Kokabi, P. Švec, F. Simančík and A. Gerlich, Effects of Nanometric Inclusions on the Microstructural Characteristics and Strengthening of a Friction-Stir Processed Aluminum-Magnesium Alloy, Mater. Sci. Eng. A, 2015, 642, p 215–229.CrossRef F. Khodabakhshi, A. Simchi, A. Kokabi, P. Švec, F. Simančík and A. Gerlich, Effects of Nanometric Inclusions on the Microstructural Characteristics and Strengthening of a Friction-Stir Processed Aluminum-Magnesium Alloy, Mater. Sci. Eng. A, 2015, 642, p 215–229.CrossRef
53.
Zurück zum Zitat Y. Chou, Dislocation Pileups and the Hall-Petch Relation, Can. J. Phys., 1967, 45(2), p 559–566.CrossRef Y. Chou, Dislocation Pileups and the Hall-Petch Relation, Can. J. Phys., 1967, 45(2), p 559–566.CrossRef
54.
Zurück zum Zitat H. Yu, Y. Xin, M. Wang and Q. Liu, Hall-Petch Relationship in Mg Alloys: A Review, J. Mater. Sci. Technol., 2018, 34(2), p 248–256.CrossRef H. Yu, Y. Xin, M. Wang and Q. Liu, Hall-Petch Relationship in Mg Alloys: A Review, J. Mater. Sci. Technol., 2018, 34(2), p 248–256.CrossRef
55.
Zurück zum Zitat N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806.CrossRef N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806.CrossRef
56.
Zurück zum Zitat W. Yuan, S.K. Panigrahi and R.S. Mishra, Achieving High Strength and High Ductility in Friction Stir-Processed Cast Magnesium Alloy, Metall. Mater. Trans. A, 2013, 44(8), p 3675–3684.CrossRef W. Yuan, S.K. Panigrahi and R.S. Mishra, Achieving High Strength and High Ductility in Friction Stir-Processed Cast Magnesium Alloy, Metall. Mater. Trans. A, 2013, 44(8), p 3675–3684.CrossRef
57.
Zurück zum Zitat Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54(7), p 1321–1326.CrossRef Z. Zhang and D. Chen, Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength, Scr. Mater., 2006, 54(7), p 1321–1326.CrossRef
58.
Zurück zum Zitat F. Khodabakhshi, M. Haghshenas, H. Eskandari and B. Koohbor, Hardness−Strength Relationships in Fine and Ultra-Fine Grained Metals Processed through Constrained Groove Pressing, Mater. Sci. Eng. A, 2015, 636, p 331–339.CrossRef F. Khodabakhshi, M. Haghshenas, H. Eskandari and B. Koohbor, Hardness−Strength Relationships in Fine and Ultra-Fine Grained Metals Processed through Constrained Groove Pressing, Mater. Sci. Eng. A, 2015, 636, p 331–339.CrossRef
59.
Zurück zum Zitat K. Spencer and M.-X. Zhang, Heat Treatment of Cold Spray Coatings to Form Protective Intermetallic Layers, Scr. Mater., 2009, 61(1), p 44–47.CrossRef K. Spencer and M.-X. Zhang, Heat Treatment of Cold Spray Coatings to Form Protective Intermetallic Layers, Scr. Mater., 2009, 61(1), p 44–47.CrossRef
60.
Zurück zum Zitat F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1995. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 1995.
61.
Zurück zum Zitat K. Huang and R. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574.CrossRef K. Huang and R. Logé, A Review of Dynamic Recrystallization Phenomena in Metallic Materials, Mater. Des., 2016, 111, p 548–574.CrossRef
62.
Zurück zum Zitat K. Máthis, J. Gubicza and N. Nam, Microstructure and Mechanical Behavior of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2005, 394(1–2), p 194–199.CrossRef K. Máthis, J. Gubicza and N. Nam, Microstructure and Mechanical Behavior of AZ91 Mg Alloy Processed by Equal Channel Angular Pressing, J. Alloys Compd., 2005, 394(1–2), p 194–199.CrossRef
63.
Zurück zum Zitat R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement and Superplastic Flow in Magnesium Alloys Processed by ECAP, Mater. Sci. Eng. A, 2009, 501(1–2), p 105–114.CrossRef R.B. Figueiredo and T.G. Langdon, Principles of Grain Refinement and Superplastic Flow in Magnesium Alloys Processed by ECAP, Mater. Sci. Eng. A, 2009, 501(1–2), p 105–114.CrossRef
64.
Zurück zum Zitat G. Faraji, H. Jafarzadeh, H. Jeong, M.M. Mashhadi and H. Kim, Numerical and Experimental Investigation of the Deformation Behavior during the Accumulative Back Extrusion of an AZ91 Magnesium Alloy, Mater. Des., 2012, 35, p 251–258.CrossRef G. Faraji, H. Jafarzadeh, H. Jeong, M.M. Mashhadi and H. Kim, Numerical and Experimental Investigation of the Deformation Behavior during the Accumulative Back Extrusion of an AZ91 Magnesium Alloy, Mater. Des., 2012, 35, p 251–258.CrossRef
65.
Zurück zum Zitat J. Gubicza, K. Máthis, Z. Hegedũs, G. Ribárik and A.L. Tóth, Inhomogeneous Evolution of Microstructure in AZ91 Mg-Alloy during High Temperature Equal Channel Angular Pressing, J. Alloys Compd., 2010, 492(1–2), p 166–172.CrossRef J. Gubicza, K. Máthis, Z. Hegedũs, G. Ribárik and A.L. Tóth, Inhomogeneous Evolution of Microstructure in AZ91 Mg-Alloy during High Temperature Equal Channel Angular Pressing, J. Alloys Compd., 2010, 492(1–2), p 166–172.CrossRef
66.
Zurück zum Zitat H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang and A. Ma, A Two-step Dynamic Recrystallization Induced by LPSO Phases and its Impact on Mechanical Property of Severe Plastic Deformation Processed Mg97Y2Zn1 Alloy, J. Alloys Compd., 2017, 704, p 509–517.CrossRef H. Liu, J. Ju, X. Yang, J. Yan, D. Song, J. Jiang and A. Ma, A Two-step Dynamic Recrystallization Induced by LPSO Phases and its Impact on Mechanical Property of Severe Plastic Deformation Processed Mg97Y2Zn1 Alloy, J. Alloys Compd., 2017, 704, p 509–517.CrossRef
67.
Zurück zum Zitat Q. Wang, Y. Chen, M. Liu, J. Lin and H.J. Roven, Microstructure Evolution of AZ Series Magnesium Alloys during Cyclic Extrusion Compression, Mater. Sci. Eng. A, 2010, 527(9), p 2265–2273.CrossRef Q. Wang, Y. Chen, M. Liu, J. Lin and H.J. Roven, Microstructure Evolution of AZ Series Magnesium Alloys during Cyclic Extrusion Compression, Mater. Sci. Eng. A, 2010, 527(9), p 2265–2273.CrossRef
68.
Zurück zum Zitat S.R. Agnew and O. Duygulu, A Mechanistic Understanding of the Formability of Magnesium: Examining the Role of Temperature on the Deformation Mechanisms, Mater. Sci. Forum, 2003, 419–422, p 177–188.CrossRef S.R. Agnew and O. Duygulu, A Mechanistic Understanding of the Formability of Magnesium: Examining the Role of Temperature on the Deformation Mechanisms, Mater. Sci. Forum, 2003, 419–422, p 177–188.CrossRef
69.
Zurück zum Zitat Y. Li, Y. Zhao, W. Liu, C. Xu, Z. Horita, X. Liao, Y. Zhu, T. Langdon and E. Lavernia, Influence of Grain Size on the Density of Deformation Twins in Cu–30% Zn Alloy, Mater. Sci. Eng. A, 2010, 527(16–17), p 3942–3948.CrossRef Y. Li, Y. Zhao, W. Liu, C. Xu, Z. Horita, X. Liao, Y. Zhu, T. Langdon and E. Lavernia, Influence of Grain Size on the Density of Deformation Twins in Cu–30% Zn Alloy, Mater. Sci. Eng. A, 2010, 527(16–17), p 3942–3948.CrossRef
70.
Zurück zum Zitat Y. Yuan, A. Ma, J. Jiang, Y. Sun, F. Lu, L. Zhang and D. Song, Mechanical Properties and Precipitate Behavior of Mg–9Al–1Zn Alloy Processed by Equal Channel Angular Pressing and Aging, J. Alloys Compd., 2014, 594, p 182–188.CrossRef Y. Yuan, A. Ma, J. Jiang, Y. Sun, F. Lu, L. Zhang and D. Song, Mechanical Properties and Precipitate Behavior of Mg–9Al–1Zn Alloy Processed by Equal Channel Angular Pressing and Aging, J. Alloys Compd., 2014, 594, p 182–188.CrossRef
71.
Zurück zum Zitat Z. Abbasi, R. Ebrahimi and J.M. Cabrera, Investigation on Texture Evolution and Recrystallization Aspects of Novel Mg–Zn–Gd–Y–Nd Alloys, Met. Mater. Int., 2021, 27(10), p 3983–3992.CrossRef Z. Abbasi, R. Ebrahimi and J.M. Cabrera, Investigation on Texture Evolution and Recrystallization Aspects of Novel Mg–Zn–Gd–Y–Nd Alloys, Met. Mater. Int., 2021, 27(10), p 3983–3992.CrossRef
Metadaten
Titel
Microstructure Evolution of AZ91 Alloy Processed by Twin Parallel Channel Angular Extrusion Technique
verfasst von
M. Abdi
R. Ebrahimi
Publikationsdatum
17.02.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06680-0

Weitere Artikel der Ausgabe 7/2022

Journal of Materials Engineering and Performance 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.