Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 5/2020

13.02.2020 | Research Article-Civil Engineering

Model Testing on Failure Mechanism of Tunnel Face in Sandy Cobble Stratum

verfasst von: Junwei Zhang, Ling Huang, Taixin Peng, Haoquan Wang, Yichong Zhang, Liang Guo

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

One of the universal problems in shield tunneling is face collapse caused by the sudden change of the soil in front of the tunnel face in weak sandy pebble stratum. In order to control the sudden change of the soil, the model test method is used to study the stability of the tunnel face in the sandy pebble stratum. The results indicate that (1) in sandy pebble stratum, the instability mode of the tunnel face can be divided into four stages of slow development stage, transition stage, rapid development stage and instability stage; (2) the influence of the ratio of the soil depth and the support pressure on the instability of the tunnel face can be divided into three stages of the insensitive stage, the sensitive stage and the failure stage; (3)finally, the instability failure shape of the sand–pebble stratum is upward developing in the lower part “chimney shape,” while the upperpart of the surface presents “spiral shape” subsidence and ultimately presents “crater shape”; (4) when excavation face is unstable, the surface horizontal settlement groove meets the normal distribution curve proposed by Peck and is similar to the settlement shape measured by the test. The study also found that the bamboo sticks with sand inserted in the soil in front of the tunnel face can increase the friction between the bamboo sticks and compact the soil, make the soil more prone to form soil arches, and effectively control the deformation of the soil in front of the tunnel face.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Broms, B.B.; Bennermark, H.: Stability of clay at vertical openings. J. Soil Mech. Found. Div. ASCE 96(1), 71–94 (1967) Broms, B.B.; Bennermark, H.: Stability of clay at vertical openings. J. Soil Mech. Found. Div. ASCE 96(1), 71–94 (1967)
2.
Zurück zum Zitat Broere, W.: Tunnel Face Stability and New CPT Applications. Delft University, Delft (2001) Broere, W.: Tunnel Face Stability and New CPT Applications. Delft University, Delft (2001)
3.
Zurück zum Zitat Comejo, L.: Instability at the face: its repercussions for tunneling technology. Tunn. Tunn. 21, 69–74 (1989) Comejo, L.: Instability at the face: its repercussions for tunneling technology. Tunn. Tunn. 21, 69–74 (1989)
4.
Zurück zum Zitat Hernández, Y.Z.; Farfán, A.D.; de Assis, A.P.: Three-dimensional analysis of tunnel face stability of shallow tunnels. Tunn. Undergr. Sp. Technol. 92, 103062 (2019)CrossRef Hernández, Y.Z.; Farfán, A.D.; de Assis, A.P.: Three-dimensional analysis of tunnel face stability of shallow tunnels. Tunn. Undergr. Sp. Technol. 92, 103062 (2019)CrossRef
5.
Zurück zum Zitat Kavvadas, M.; Litsas, D.; Vazaios, I.; Fortsakis, P.: Development of a 3D finite element model for shield EPB tunneling. Tunn. Undergr. Sp. Technol. 65, 22–34 (2017)CrossRef Kavvadas, M.; Litsas, D.; Vazaios, I.; Fortsakis, P.: Development of a 3D finite element model for shield EPB tunneling. Tunn. Undergr. Sp. Technol. 65, 22–34 (2017)CrossRef
6.
Zurück zum Zitat Paternesi, A.; Schweiger, H.F.; Scarpelli, G.: Numerical analyses of stability and deformation behavior of reinforced and unreinforced tunnel faces. Comput. Geotech. 88, 256–266 (2017)CrossRef Paternesi, A.; Schweiger, H.F.; Scarpelli, G.: Numerical analyses of stability and deformation behavior of reinforced and unreinforced tunnel faces. Comput. Geotech. 88, 256–266 (2017)CrossRef
7.
Zurück zum Zitat Lü, X.; Zhou, Y.; Huang, M.; Zeng, S.: Experimental study of the face stability of shield tunnel in sands under seepage condition. Tunn. Undergr. Sp. Technol. 74, 195–205 (2018)CrossRef Lü, X.; Zhou, Y.; Huang, M.; Zeng, S.: Experimental study of the face stability of shield tunnel in sands under seepage condition. Tunn. Undergr. Sp. Technol. 74, 195–205 (2018)CrossRef
8.
Zurück zum Zitat Berthoz, N.; Branque, D.; Wong, H.; Subrin, D.: TBM soft ground interaction: experimental study on a 1 g reduced-scale EPBS model. Tunn. Undergr. Sp. Technol. 72, 189–209 (2018)CrossRef Berthoz, N.; Branque, D.; Wong, H.; Subrin, D.: TBM soft ground interaction: experimental study on a 1 g reduced-scale EPBS model. Tunn. Undergr. Sp. Technol. 72, 189–209 (2018)CrossRef
9.
Zurück zum Zitat Min, F.; Zhu, W.; Lin, C.; Guo, X.: Opening the excavation chamber of the large-diameter size slurry shield: a case study in Nanjing Yangtze River Tunnel in China. Tunn. Undergr. Sp. Technol. 46, 18–27 (2015)CrossRef Min, F.; Zhu, W.; Lin, C.; Guo, X.: Opening the excavation chamber of the large-diameter size slurry shield: a case study in Nanjing Yangtze River Tunnel in China. Tunn. Undergr. Sp. Technol. 46, 18–27 (2015)CrossRef
10.
Zurück zum Zitat Kamata, H.; Mashimo, H.: Centrifuge model test of tunnel face reinforcement by bolting. Tunn. Undergr. Sp. Technol. 18(2), 205–212 (2003)CrossRef Kamata, H.; Mashimo, H.: Centrifuge model test of tunnel face reinforcement by bolting. Tunn. Undergr. Sp. Technol. 18(2), 205–212 (2003)CrossRef
11.
Zurück zum Zitat Chen, R.; Li, J.; Kong, L.; Tang, L.: Experimental study on face instability of shield tunnel in sand. Tunn. Undergr. Sp. Technol. 33, 12–21 (2013)CrossRef Chen, R.; Li, J.; Kong, L.; Tang, L.: Experimental study on face instability of shield tunnel in sand. Tunn. Undergr. Sp. Technol. 33, 12–21 (2013)CrossRef
12.
Zurück zum Zitat Kirsch, A.: Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotech. 5(1), 43–62 (2010)CrossRef Kirsch, A.: Experimental investigation of the face stability of shallow tunnels in sand. Acta Geotech. 5(1), 43–62 (2010)CrossRef
13.
Zurück zum Zitat Zhu, H.H.; Xu, Q.W.; Fu, D.M.; et al.: Study on design principle of shield machine applicable to differerent strata. Rock Soil Mech. 27(9), 1437–1441 (2006) Zhu, H.H.; Xu, Q.W.; Fu, D.M.; et al.: Study on design principle of shield machine applicable to differerent strata. Rock Soil Mech. 27(9), 1437–1441 (2006)
14.
Zurück zum Zitat Xu, Q.W.; Zhu, H.H.; Fu, S.M.; et al.: Design on model test of tunnel excavation with EPB shield machine in sand stratum. Chin. J. Undergr. Sp. Eng. 2(3), 361–364 (2006) Xu, Q.W.; Zhu, H.H.; Fu, S.M.; et al.: Design on model test of tunnel excavation with EPB shield machine in sand stratum. Chin. J. Undergr. Sp. Eng. 2(3), 361–364 (2006)
15.
Zurück zum Zitat Le, B.T.; Taylor, R.N.: Response of clay soil to three-dimensional tunneling simulation in centrifuge models. Soils Found. 58, 808–818 (2018)CrossRef Le, B.T.; Taylor, R.N.: Response of clay soil to three-dimensional tunneling simulation in centrifuge models. Soils Found. 58, 808–818 (2018)CrossRef
16.
Zurück zum Zitat Chambon, P.; Corté, J.: Shallow tunnels in cohesionless soil: stability of tunnel face. J. Geotech. Eng. 120(7), 1148–1165 (1994)CrossRef Chambon, P.; Corté, J.: Shallow tunnels in cohesionless soil: stability of tunnel face. J. Geotech. Eng. 120(7), 1148–1165 (1994)CrossRef
17.
Zurück zum Zitat Mair, R.J.; Taylor, R.N.: Theme lecture: bored tunneling in the urban environment. In: Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, pp. 2353–2385 (1997) Mair, R.J.; Taylor, R.N.: Theme lecture: bored tunneling in the urban environment. In: Proceedings of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, pp. 2353–2385 (1997)
Metadaten
Titel
Model Testing on Failure Mechanism of Tunnel Face in Sandy Cobble Stratum
verfasst von
Junwei Zhang
Ling Huang
Taixin Peng
Haoquan Wang
Yichong Zhang
Liang Guo
Publikationsdatum
13.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 5/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04385-x

Weitere Artikel der Ausgabe 5/2020

Arabian Journal for Science and Engineering 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.